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Abstract
This paper describes Mortar, a distributed stream

processing platform for building very large queries
across federated systems (enterprises, grids, datacenters,
testbeds). Nodes in such systems can be queried for dis-
tributed debugging, application control and provisioning,
anomaly detection, and measurement. We address the
primary challenges of managing continuous queries that
have thousands of wide-area sources that may periodi-
cally be down, disconnected, or overloaded, e.g., multi-
ple data centers filled with cheap PCs, Internet testbeds
such as Planetlab, or country-wide sensor installations.

Mortar presents a clean-slate design for best-effort in-
network processing. For each query, it builds multiple,
static overlays and leverages the union of overlay paths
to provide resilient query installation and data routing.
Further, a unique data management scheme mitigates the
impact of clock skew on distributed stream processing,
reducing result latency by a factor of 8, and allows users
to specify custom in-network operators that transpar-
ently benefit from multipath routing. When compared to
a contemporary distributed snapshot querying substrate,
Mortar uses a fifth of the bandwidth while providing in-
creased query resolution, responsiveness, and accuracy
during failures.

1 Introduction

There is a growing need to monitor, diagnose, and
react to data and event streams emitted by wide-scale
networked systems. Examples include big-box retail-
ers analyzing retail streams across thousands of loca-
tions, real-time weather predictors sourcing hundreds of
doppler radars [13], studying network attacks with dis-
tributed Internet telescopes [3] or end systems [11, 15],
and anomaly detection across wired [20] or wireless net-
work infrastructures [9, 2].

These systems represent a global pool of nodes con-
tinuously emitting system and application-specific data
streams. In these scenarios, in-network data processing
is often necessary as the data streams are too large, too
numerous, or the important events within the streams too
sparse to pay the cost of bringing the data to a central
location. While distributed data processing is important
for monitoring large backbone networks [36, 16], where

ISPs collect summary statistics for thousands of net-
work elements, other important applications are emerg-
ing. For instance, end-system monitoring specifically
leverages the host vantage point as a method for in-
creasing the transparency of network activity in enter-
prise networks [11] or observing the health of the Inter-
net itself [15]. These environments pose challenges that
strongly affect stream processing fidelity, including fre-
quent node and network failures and mis-configured or
ill-behaved clock synchronization protocols [24]. This
has recently been referred to as the “Internet-Scale Sens-
ing” problem [26].

Mortar provides a platform for instrumenting end
hosts, laptop-class devices, and network elements with
data stream processing operators. The platform man-
ages the creation and removal of operators, and orches-
trates the flow of data between them. Our design goal
is to support best-effort data stream processing across
these federated systems, specifically providing the ability
to manage in-network queries that source tens of thou-
sands of streams. While other data management sys-
tems exist, their accuracy is often encumbered by pro-
cessing all queries over a single dynamic overlay, such
as a distributed hash table (DHT) [18, 41, 27]. Our
own experience (and that of others [33]) indicates an
impedance mismatch between DHT design objectives
and in-network stream processing. Even without fail-
ures, periodic recovery mechanisms may disrupt the data
management layer during route table maintenance, in-
consistencies, and route flaps [17].

Mortar incorporates a suite of complementary tech-
niques that provide accurate and timely results during
failures. Such an ability facilitates stream processing
across federated environments where the set of all nodes
in the system is well known, but many nodes may pe-
riodically be down, disconnected, or overloaded, e.g.,
multiple data centers filled with cheap PCs, Internet
testbeds such as Planetlab, or city-wide sensor instal-
lations [25]. This work complements prior research
that has primarily focused on querying distributed struc-
tured data sources [18, 14, 27], processing high speed
streams [19], managing large numbers of queries [8], or
maintaining consistency guarantees during failures [4].

This paper makes the following contributions:

• Failure-resilient aggregation and query manage-
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ment: Mortar uses the combined connectivity of a static
set of overlay trees to achieve resilience to node and net-
work failures. By intelligently building the tree set (Sec-
tion 3), the overlays are both network aware and exhibit
sufficient path diversity to connect most live nodes dur-
ing failures. Our data routing (Section 3.3) and query re-
covery protocols (Section 6) ensure that even when 40%
of the nodes in a given set are unavailable, the system
can successfully query 94% of the remaining nodes.

• Accurate stream processing in the presence of clock
offset: The lack of clock synchronization, such as the
presence of different clock skews (frequencies), can
harm result fidelity by changing the relative time re-
ported between nodes (relative clock offset)1. For dis-
tributed stream processing this can increase latency and
pollute the final result with values produced at the wrong
time. Mortar’s syncless mechanism (Section 5) replaces
traditional timestamps with ages, eliminating the effect
of clock offset on results and improving result latency by
a factor of 8.

• Multipath routing with duplicate-sensitive opera-
tors: Mortar’s time-division data management model
isolates data processing from data routing, allowing
duplicate-free processing in the presence of multipath
routing policies. This enables our dynamic tuple striping
protocol (Section 3.3), and allows user-defined aggregate
operators, without requiring duplicate-insensitive opera-
tors or synopses [28].

Extensive experimentation with our Mortar prototype
using a wide-area network emulator and Internet-like
topologies indicate that it enables accurate best-effort
stream processing in wide-scale environments. We com-
pare its performance to a release of SDIMS [41], an ag-
gregating snapshot query system, built on the latest ver-
sion of FreePastry(2.0 03). Mortar uses 81% less band-
width with higher monitoring frequency, and is more ac-
curate and responsive during (and after) failures. Ad-
ditionally, Mortar can operate accurately in environ-
ments with high degrees of clock offset, correctly as-
signing 91% of the values in the system to the right 5-
second window, outperforming a commercial, central-
ized stream processor. Finally, to validate the design of
the operator platform, we design a Wi-Fi location sens-
ing query that locates a MAC using three lines of the
Mortar Stream Language, leveraging data sourced from
188 sensors throughout a large office building.

2 Design

As a building block for data processing applications,
Mortar allows users to deploy continuous queries in fed-
erated environments. It is designed to support hundreds
of in-network aggregate queries that source up to tens

of thousands of nodes producing data streams at low to
medium rates, issuing one to 1000’s of records a second.
Given the size of such queries, we expect machine fail-
ures and disconnections to be common. Thus a key de-
sign goal is to provide failure-resilient data stream rout-
ing and processing, maximizing result accuracy without
sacrificing responsiveness.

We begin by motivating a clean-slate approach for
connecting continuous aggregate operators based on
static overlays. A goal of this data routing substrate is
to capture all constituent data that were reachable dur-
ing the query’s processing window [18, 41, 40], and this
work uses result completeness, the percentage of peers or
nodes whose data are included in the final result, as the
primary metric for accuracy. We end this section with
how users specify stream-based queries and user-defined
operators in Mortar.

2.1 Motivating static overlays

While it is natural to consider a dynamic overlay,
such as a distributed hash table (DHT), as the underly-
ing routing substrate, we pursue a clean-slate design for
a number of reasons. First, we desire scoped queries;
only the nodes that provide data should participate in
query processing. It is difficult to limit or to specify
nodes in the aggregation trees formed by a DHT’s rout-
ing policy. Second, we can reduce system complexity
and overhead by taking advantage of our operating en-
vironment, where the addition or removal of nodes is
rare. While Mortar peers may become unavailable, they
never explicitly “join” or “leave” the system. Further,
DHTs are not optimized for tasks such as operator place-
ment [33], and, more importantly, complicated routing
table maintenance protocols may produce routing incon-
sistencies [17].

In contrast, Mortar connects query operators across
multiple static trees, allowing query writers to explicitly
specify the participants or node set. Here we take ad-
vantage of the relatively stable membership seen in fed-
erated systems, which usually have dedicated personnel
to address faults. Machines in these environments may
temporarily fail, be shutdown for maintenance, or briefly
disconnected, but new machines rarely enter or leave the
system. The combined connectivity of this tree set not
only allows data to flow around failed links and nodes,
but also query install and remove commands. This al-
lows users to build queries across the live nodes in their
system simply with lists of allocated IP addresses.

This idea builds upon two existing, basic approaches
to improving result completeness. Data mirroring, ex-
plored by Borealis [4] and Flux [37], runs a copy of the
logical query plan across different nodes. Static strip-
ing, found in TAG [21], sends 1/n of the data up each
of n different spanning trees. We compare these ap-
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Technique Benefits
Tree set planning (Section 3) A primary static overlay tree places the majority of data close to the root operator by cluster-

ing network coordinates. Static sibling trees preserve the network awareness of the primary,
while exhibiting the path diversity of random trees.

Dyamic tuple striping (Sec-
tion 3.3)

Route tuples toward root operator while leveraging available paths. Ensures low path length
and avoids cycles. Even when 40% of the nodes are unreachable, data from 94% of the
remaining nodes is available.

Time-division data partition-
ing (Section 4)

Isolates tuple processing from tuple routing, allowing multipath tuple routing, and avoiding
duplicate data processing.

Syncless operation (Section 5) Allows accurate stream processing in the presense of relative clock offset, and reduces result
latency by a factor of 8.

Pair-wise reconciliation (Sec-
tion 6)

Leverages combined connectivity of D overlay trees for eventually consistent query installa-
tion and removal.

Table 1: A roadmap to the techniques Mortar incorporates.
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Figure 1: Result completeness under uniformly random fail-
ures for mirroring, striping, and dynamic striping. D is the tree
set size.

proaches for an aggregate sum operator using a simple
simulation. We build random trees (with 10k nodes) of
various branching factors, uniformly “fail” random links,
and then simply walk the in-memory graph and count the
number of nodes that remain connected to the root. Each
trial subjects the same tree set to N uniformly random
link failures, and we plot the average performance across
400 trials.

Figure 1 shows the ability of mirroring and striping
to maintain connections to nodes under different levels
of failure, number of trees (D), and a branching fac-
tor of 32. Both static options perform poorly. Strip-
ing performs no better than a single random tree; many
slices of a tree behave, in expectation, as a single random
tree. Data mirroring improves resiliency to failure, but at
significant cost. When 20% of the links fail, mirroring
across 10 trees (D = 10) improves consistency by 10%
while increasing the bandwidth footprint by an order of
magnitude. Obviously, this approach is not scalable.

Instead, we propose dynamic striping, a multipath
routing scheme that combines the low overhead of static
striping with adaptive overlay routing. Without failures,

Figure 2: This figure illustrates how dynamic striping avoids
failed links (or nodes). Here, after a failed link, node B routes
successive partial values to node C on the second tree.

each operator stripes outbound data across each down-
stream parent in the tree set. When a failure occurs, dis-
connecting a parent, the operator migrates the stripe to
a remaining, live parent. Note that because Mortar is a
best-effort system, it does not retransmit data lost due to
the failure. Figure 2 illustrates this three step process.
This allows nodes to continue to push values towards the
root as long as there remains a single live path across the
union of upward paths in the tree set. Figure 1, shows
that this technique is effective, even with a low number
of stripes.

Routing data across a set of static spanning trees for
each query sidesteps many of the issues raised by dy-
namic overlays, but poses new questions. How should
one design the tree set so that it is both network aware,
but provides a diverse set of overlay paths? How does
one route data towards the root while ensuring low path
length and avoiding cycles? How should the system
prevent duplicate data processing to allow duplicate-
sensitive aggregate operators? Meeting these design
challenges required us to innovate in a number of areas
and led to the development of a suite of complementary
techniques (Table 1).
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2.2 Queries and in-network operators

Mortar consists of a set of peering processes, any of
which may accept, compile, and inject new queries. Each
query is defined by its in-network operator type and pro-
duces a single, continuous output data stream. It may
take as input one or more raw sensor data streams or sub-
scribe to existing data streams to compose complex data
processing operations. Users write queries in the Mortar
Stream Language2.

We require that all operators are non blocking; they
may emit results without waiting for input from all
sources. An operator’s unit of computation is a tuple, an
ordered set of data elements. Operators use sliding win-
dows to compute their result, issuing answers that sum-
marize the last x seconds (a time window) or the last x
tuples (a tuple window) of a source stream. This is the
window range; the window slide (again in time or tuple
count) defines the update frequency (e.g., report the av-
erage of the last 20 tuples every 10 tuples).

Mortar provides a simple API to facilitate program-
ming sophisticated in-network operators. Many applica-
tion scenarios may involve user-defined aggregate func-
tions, like an entropy function to detect anomalous traf-
fic features or a bloom filter for maintaining an index.
However, multipath routing schemes often require spe-
cial duplicate and order-insensitive synopses to imple-
ment common aggregate functions [28]. When combined
with a duplicate-suppressing network transport protocol,
Mortar’s data model (Section 4) ensures duplicate-free
operation. Thus each in-network operator only needs to
provide a merge function, that the runtime calls to inject
a new tuple into the window, and a remove function,
that the runtime calls as tuples exit the window. Each
function has access to all tuples in the window. This
API supports a range of streaming operators, including
maps, unions, joins, and a variety of aggregating func-
tions, which are the focus of this work.

3 Planning and using static overlay trees

Mortar’s robustness relies on the inherent path diver-
sity in the union of multiple query trees. Our physical
dataflow planner arranges aggregate operators into a suit-
able set of aggregation trees. This means that the system
deploys an operator at each source, whether it is a raw
sensor stream or the output stream of an existing query.
This allows operators to label the tuples according to
our data model and reduce the data before crossing the
network. The first planning step is to build a network-
aware “primary” tree, and then to perform permutations
on that tree to derive its siblings. Finally, a routing policy
explores available paths while preventing routing cycles
and ensuring low-length paths.

Figure 3: We derive sibling trees from the primary tree
through successive random rotations of internal subtrees. This
introduces path diversity while retaining some clustering.

3.1 Building the primary tree

Our primary objective is to plan an aggregation tree
that places the majority of nodes “close” to the root op-
erator. This allows the root to return answers that re-
flect the majority of the data quickly. The idea is to
minimize the latency between stream sources and their
parent operator through recursive data clustering on net-
work coordinates [12]. In network coordinate systems,
each peer produces a coordinate whose Euclidean dis-
tance from other peers predicts inter-peer latency. Our
planning algorithm places operators at the centroids of
clusters, avoiding high-latency paths in the top of the
query tree.

Mortar treats network coordinates as a data stream,
and first establishes a union query to bring a set of co-
ordinates to the node compiling the query. Once at the
compiling peer, Mortar invokes a clustering algorithm
that builds full trees with a particular branching factor
(bf ). The recursive procedure takes a root node and the
node set. It proceeds by first finding bf clusters, finding
the centroids of each cluster, and making each a child of
the root. The procedure is then called with each child as
the root, and that child’s cluster as the node set. The re-
cursion ends when the input node set size is less than or
equal to the branching factor.

This design distributes tree building across a small
subset of nodes actively used to inject queries. Though
the total amount of data brought to the injecting node is
relatively small, 10,000 nodes issuing 5-dimensional co-
ordinates results in 0.5MB, the cost is amortized across
the compilation of multiple queries. The union query
may have a slide on the order of tens of minutes, as la-
tency measurements are relatively stable for those time
periods [29].

3.2 Building sibling trees

The key challenge for building sibling trees is retain-
ing the majority of the primary’s clustering while provid-
ing path diversity. These are competing demands, large
changes to the primary will create a less efficient tree.

Our algorithm works in a bottom-up fashion, pushing
leaves into the tree to create path diversity. This is im-
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portant because interior-node disjoint (IND) trees ensure
that failures in the interior of one tree only remove a sin-
gle node’s data in any other. However, complete IND
trees would fail to retain the primary trees clustering.

We derive each sibling from the primary tree. The
process walks the tree according to a post-order traver-
sal and performs random rotations on each internal node.
Figure 3 illustrates the process for a binary tree. Start-
ing at the bottom of the tree, the algorithm ascends to the
first internal node and rotates that subtree. The rotation
chooses a random child and exchanges it with the current
parent. Rotations continue percolating leaves up into the
tree until it rotates the root subtree.

While this pushes numLeaves
bf

leaves into the interior
of the tree, it doesn’t replace all interior nodes. At the
same time, it is unlikely that a given leaf node will be
rotated into a high position in the tree, upsetting the clus-
tering. Our experimental results (Section 7) confirm this.
Note that sibling tree construction makes no explicit ef-
fort to increase the underlying path diversity. Doing so is
the subject of future work. Finally, an obvious concern
is a change in the network coordinates used to plan the
primary tree. While we have yet to investigate this in de-
tail, large changes in network coordinates would require
query re-deployment.

3.3 Dynamic tuple striping

As operators send tuples towards the root, they must
choose a neighboring operator in one of the n trees.
For dynamic tuple striping the default policy is to stripe
newly created tuples in a round-robin fashion across the
trees. However, when a parent becomes disconnected,
the operator must choose a new destination. The chal-
lenge is to balance the competing goals of exploring the
path diversity in the tree set while ensuring progress to-
wards the query root. We explore a staged policy that
leverages a simple heartbeat protocol to detect unreach-
able parents.

Each peer node maintains a list of live parents for all
locally installed queries. Each node also maintains a set
of nodes from which it expects heartbeats and a set of
nodes to which it delivers heartbeats. When the node
installs a query, it updates these sets based on the parents
and children contained in the query operator. Heartbeats
are the primary source of bandwidth overhead in Mortar.

Figure 4 illustrates the intuition behind our scheme. In
general the routing policy allows tuples to choose a par-
ent in a given tree only if it moves the tuple closer to the
root. To do so, each tuple maintains a list of {tree,level}
pairs that indicates the last level of each tree the tuple vis-
ited. Operators consult this list to implement the routing
policy. To explain the policy we define four functions.
The function OL(t) determines the level occupied by the
local operator on tree t. The function TL(t) specifies the

Figure 4: Multipath tuple routing up two trees. To ensure
forward progress, tuples route to trees at levels less than the
last level they occupied on the tree.

TUPLE ARRIVES ON TREE t

1 Same tree: Route to P(t)

2 Up*: Route to P(x) such that OL(x) ≤ TL(t)

3 Flex: Route to P(x) such that OL(x) ≤ TL(x))
4 Flex down: Route to C(x) such that OL(x) ≤ TL(x)

5 Drop

Figure 5: A staged multipath routing policy. Note that we may
choose the tree with the minimum level given the constraint.

last level at which the current tuple visited tree t. Func-
tions P and C of t indicate the parent/child of the current
node in tree t.

Figure 5 shows the decision process operators use to
choose a destination node. Each successive stage al-
lows for more routing freedom, but may also lengthen
the path. The first policy attempts to use the same tree
on which the tuple arrived. If this parent, P(t), is down,
we try “up*”, which tries a parent on a different tree, x,
that is at least as close to the root as the current tree t.
If no such tree can be found, we allow the tuples overlay
path to lengthen. The “flex” policy tries to make forward
progress on any tree. These first three stages prevent
cycles by ensuring that tuples do not re-enter any tree
at a level already visited. However, initial experiments
showed that they overly constrain the available paths.

Thus, we allow a tuple to descend to the child of a
tree chosen by the “flex” policy. This however, does
not ensure cycle-free operation, and, when using “flex
down”, we increment a TTL-down field to limit the pos-
sible number of backward steps a tuple can make. When
this field is greater than three, stage 4 is no longer avail-
able, and the operator drops the tuple. While not shown
in Figure 5, we may choose the tree with the minimum
level at each stage.

4 Time-division data partitioning

Dynamic tuple striping requires a data model that al-
lows multipath routing. At any moment, a single query
may have thousands of tuples in flight across multiple
physical dataflows. For example, an aggregate operator
participates in each tree (dataflow) simultaneously, and
could receive a tuple from any of its children on any tree.
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The insight is to allow operators to label tuples with
an index that describes the particular processing window
to which it belongs. Both time and tuple windows can
be uniquely identified by a time range, thus the name
time-division. With these time-division indices, opera-
tors need only inspect the index to know which tuples
may be processed in the same window. The scheme is
independent of operator type; the data model supports
standard operators such as joins, maps, unions, filters,
and aggregates. Though this work focuses on in-network
aggregates because of their utility, the model also sup-
ports content-sensitive operators, those to whom specific
tuples must be routed (e.g,. a join must see all of the
data), by using a deterministic function that maps tuple
indices to particular operator replicas.

In many respects, the time-division data model builds
upon Borealis’ SUnion operator, which uses tuple times-
tamps to maintain deterministic processing order across
operator replicas [4]. However, instead of a single times-
tamp, it indexes tuples with validity intervals, and defines
how to transform those indices as operators process in-
put. Unlike SUnion, the data model underlies all Mortar
operators. Its purpose is to allow replicas to process dif-
ferent parts of a stream, not to support a set of consistent,
mirrored operator replicas. The data model also differs
from previous approaches that parallelize operators by
partitioning input data based on its content [6, 37].

The model impacts operator design in two ways. First,
an operator computes across a window of raw tuples
streamed from the local source, upcalling the merge
function for each tuple. This first merge transforms raw
tuples into summary tuples and attaches an index; we call
this merging across time. Note that, if the operator is an
aggregation function, then the summary tuple is a partial
value. All tuples sent on the network (sent between op-
erators) are summary tuples. An operator’s second duty
is to merge summary tuples from all its upstream (chil-
dren) operators. We call this merging across space. The
runtime, using the index attached to the summary tuple,
calls the same merge function with summary tuples that
all belong to the same processing window.

4.1 Indexing summary tuples

Operators create summary tuple indices using two
timestamps [tb,te] that indicates a range of time for
which the summary is valid. If the window is defined in
time, tb indicates the beginning of the time window and
te represents the end. If the window is defined across
tuples, tb indicates the arrival time of the first tuple and
te the arrival time of the last. Thus each summary tuple
represents a particular slide of the window across the raw
input tuples.

Figure 6 illustrates two nodes creating summary tu-
ples and transmitting them to the root operator. This is

Figure 6: Two nodes creating summary tuples transmit them
to the root. Each node (A and B) receives tuples only from its
sensor, and labels the summary tuples with a window index that
uniquely identifies which set of summaries can be merged.

a time window with the range equal to the slide; opera-
tors at nodes A and B create indices for each produced
summary tuple. This figure illustrates that, for time win-
dows, we can actually use a logical index instead of a
time range. The root groups arriving summary tuples
with identical indices, upcalls the operator’s merge func-
tion, and reports a final result R. Here, the root only
receives summary tuples.

For time windows, this scheme provides semantics
identical to that of a centralized interpretation, assum-
ing synchronized clocks. In our example the root would
return identical results had it sourced the data streams
directly. This scheme also provides useful semantics for
tuple window processing. Instead of calculating over the
globally last n received tuples (no matter the source),
Mortar’s query operators process the last n tuples from
each source.

Summaries contain disjoint data for a given time span,
and as long as the routing policy and underlying transport
avoid duplicates, time-division data partitioning ensures
duplicate-free operation. Nodes are now free to route
tuples along any available physical query tree, even if it
means the summary re-visits a physical node. Note that
if a Mortar query consists of content-sensitive operators,
upstream operators are constrained in their tuple routing
options. In that case, source operators must agree to send
the same indices to the same replica.

4.2 The time-space list

An operator may receive summary tuples in any order
from upstream operators, and it must merge summary tu-
ples with matching indices. A per-operator time-space
(TS) list tracks the current set of active indices, indices
for which the operator is actively merging arriving sum-
mary tuples. The TS list either inserts or removes (evicts)
summaries. A TS list is a sorted linked list of summary
tuples representing potential final values to be emitted by
this operator. Here we assume that each summary tuple
is valid for its index: [tb,te].

Upon arrival the operator inserts the tuple into the TS
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list and merges it with existing summary tuples with
overlapping indices. If indices do not overlap, we in-
sert the tuple in order into the list. An exact index
match results in the two tuples being merged (calling
merge). The index of the resulting summary tuple
is unchanged. However, when two tuples T1 and T2

have partially overlapping indices, the system creates
a new tuple, T3. T3 represents the overlapping re-
gion, and its value is the result of merging T1 and T2.
T3’s index begins at Max(T 1begin, T 2begin) and ends at
Min(T 1end, T 2end). The non-overlapping regions re-
tain their initial values and shrink their intervals to ac-
commodate T3. Thus, values are counted only once for
any given interval of time.

4.3 Dealing with loss and delay

A common problem in distributed stream processing is
telling the difference between sources that have stalled,
experienced network delay, or failed. This ambiguity
makes it hard for an operator to choose when to output an
entry (window) in the TS list. Mortar uses dynamic time-
outs to balance the competing demands of result latency
and query completeness. The runtime expires entries af-
ter a timeout based on the longest delay a tuple expe-
riences on a path to this operator. Each tuple carries an
estimate of the time it has taken to reach the current oper-
ator (T .age), which includes the tuple’s residence time at
each previous operator. Operators maintain a latency es-
timate, called netDist, using an EWMA of the maximum
received sample3. When the first tuple for a particular
index arrives, the TS list sets the timeout in proportion
to netDist−T .age. This is because, by the time tuple T
arrives, T .age time has already passed; the most delayed
tuple should already be in flight to the operator.

Stalled streams also impact our ability to ascertain
summary tuple completeness, and determine how long
a tuple-window summary remains valid. To remedy this,
operators periodically inject “boundary” tuples when a
raw input stream stalls. They are similar in spirit to the
boundary tuples used in Borealis [4]. For time windows,
boundary tuples are only used to update the tuple’s com-
pleteness metric (a count of the number of participants);
they never carry values. However, boundary tuples play
an additional role when maintaining tuple windows. A
tuple window only ends when the first non-boundary tu-
ple of the next slide arrives. When a stream stalls, bound-
ary tuples tell downstream operators to extend the previ-
ous summary tuple’s index, extending the validity inter-
val of the summary.

Finally, Mortar requires that the underlying trans-
port protocol suppress duplicate messages, but otherwise
makes few demands of it.

ARRIVAL OF TUPLE T

1 O.t ref← O.t ref + elapsed time
2 index← (O.t ref - T .age) / O.slide
EVICTION OF TUPLE S

1 O.t ref← O.t ref + elapsed time
2 S.age← AVG(T1.age,...,Tn.age)

Figure 7: Syncless indexing pseudocode.

5 Reducing the impact of clock skew

The performance of distributed stream processing ul-
timately depends on accurate timekeeping. But assum-
ing synchronized clocks is a well-known problem across
large, distributed systems. Even with its wide-spread
adoption, NTP may be mis-configured, its ports may be
blocked, or it may have limited resolution on heavily
loaded nodes [24]. In such cases, differences in clock
skew or large clock adjustments can cause substantial
differences in reported time between nodes, the relative
clock offset. This offset impacts traditional complete-
ness, the percentage of participants included in a win-
dow, but also whether the correct tuples are assigned to
the window. Here we assess the impact of relative clock
offset on true completeness, the percentage of correct tu-
ples assigned to a window, tuple dispersion, the distri-
bution of tuples from their true window, and result la-
tency. Our results, presented at the end of this section,
show that even mild amounts of offset impact complete-
ness and can increase result latency by a factor of 8.

5.1 Going syncless

This section describes a simple mechanism that im-
proves true completeness, bounds temporal dispersion,
and reduces result latency. The syncless mechanism re-
quires no explicit synchronization between peers. The
intuition is that correct tuple processing depends on the
relative passage of time experienced for each tuple. In-
stead of assigning each tuple a timestamp, we can lever-
age the age of each tuple, T.age, a field that represents
the number of milliseconds since its inception. Recall
from Section 4.3 that this includes operator residence
time and network latency. Operators then merge tuples
that are alive for similar periods of time at the same in-
dex within the time-space list, in the same summary tuple
(Section 4.2).

Figure 7 shows the pseudocode used to assign incom-
ing tuples to the correct local index. As Figure 8 illus-
trates, O.t ref maintains a relative position in time for
each operator, and begins to accumulate time on opera-
tor installation. Thus indices are purely local, indicating
the set of tuples that should be merged, and may even
be negative for some tuples. The evicted summary tu-
ple, S, represents the aggregate of those tuples, and we
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Figure 8: With the syncless mechanism, operators have differ-
ent install deltas relative to the root node.
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Figure 9: Total completeness for a 5-second window.

set the age of S to the average age of its constituents.
This weights the tuple age towards the majority of its
constituent data.

One benefit of syncless operation is that it limits tuple
dispersion to a tight boundary around the correct win-
dow. To see why, first note that operators are not guar-
anteed to install at the same instant. This results in an
install delta, (tinstall−tissued)%slide, of the query’s in-
stall time (tinstall) (seen in Figure 8) relative to the root’s
install time (tissued). This shifts the local indices for an
operator, changing the set of summary tuples merged.
Thus, between any two operators, the interpretation of
a tuple’s age can differ by at most one window. That is,
once merged, the tuple may be included in a summary tu-
ple with an average age that places it outside of the true
window. We correct for this effect by tracking the age of
the query installation message, and subtracting age from
tinstall on installation. While here the upper bound on
tuple dispersion is directly proportional to tree height,
dispersion with timestamps is virtually unbounded.

To determine the efficacy of the syncless mechanism
we deployed the Mortar prototype over our network em-
ulation testbed, both described in Section 7. Here 439
peers, connected over an Inet-generated network topol-
ogy, have their clocks set according to a distribution of
clock offset observed across Planetlab. 20% of the nodes
had an offset greater than half a second, a handful in ex-
cess of 3000 seconds. We measure true completeness
for an in-network sum, with a five-second window, as
we scale the distribution linearly along the x-axis. Each
data point is the average of 5 runs. For comparison
we plot results from a commercially available central-
ized stream processor, StreamBase, whose tuple re-order
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Figure 10: Result latency for a 5-second window.

buffer (BSort operator) we configured to hold 5k tuples.
Figure 9 illustrates true completeness (with std. dev.)

while Figure 10 shows result latency for the same exper-
iments. As expected, the timestamp mechanism results
in a high-degree of accuracy and low result latency when
there is little clock offset. However, at 50% of Planetlab
skew, true completeness drops to 75% and result latency
for timestamps increases by an order of magnitude. Off-
set also affects the results from the centralized stream
processor, though latency is nearly constant because of
the static buffering limit.

In contrast, syncless performance is independent of
clock offset4, and provides better completeness (averages
91%) than timestamped Mortar or the centralized stream
processor at low-levels of skew. Equally important, is
that result latency is constant and small (6 seconds).

Large relative clock skew and drift remain potentially
problematic. The longer a tuple remains at any node, the
more influence a badly skewed clock has on query accu-
racy. The tuple’s residence time is primarily a function
of the furthest leaf node in the tree set, and, from our
experiments across Inet-generated topologies, is on the
order of only a few seconds. Determining this penalty
remains future work. However, techniques already ex-
ist for predicting the impact of clock skew on one-way
network latency measurements [22], and could likely be
applied here. Even with these limitations, syncless op-
eration provides substantial benefits in the event NTP is
impaired or unavailable.

6 Query persistence

This section discusses how Mortar reliably installs and
removes queries across the system. As a best-effort sys-
tem, Mortar makes no attempt to salvage data that was
contained in an operator at the time of node failure. In-
stead, Mortar uses a pair-wise reconciliation protocol to
re-install the same kind of operator, including its type,
query-specific arguments, and position in the static pri-
mary and sibling aggregation trees, on a recovering node.

Initially, a peer installs (and removes) a query using
the primary tree as the basis for an un-reliable multicast.
However, because the trees are static, the message must
contain the primary and sibling tree topologies. To re-

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association412



duce message size and lessen the impact of failed nodes,
the peer breaks the tree into n components, and multi-
casts the query down each component in parallel. While
fast, it is unreliable, and the reconciliation mechanism
guarantees eventual query installation and removal.

Our protocol draws inspiration from systems such as
Bayou [31], but has been streamlined for this domain. In
particular, the storage layer guarantees single-writer se-
mantics, avoiding write conflicts, and communication is
structured, not random. Like those prior pair-wise recon-
ciliation protocols, the process is eventually consistent.

6.1 Pair-wise reconciliation

Mortar manages queries in a top-down fashion, allow-
ing children who miss install or remove commands to
reconcile with parents, and vice versa. The reconcilia-
tion protocol leverages the flow of parent-to-child heart-
beats in the physical query plan. Periodically, parent-
child node pairs exchange summaries describing shared
queries. The reconciliation protocol begins when a node
receives a summary, a hash (MD5) of relevant queries
ordered by name, that disagrees with its local summary.
The process is identical for removal operations, but be-
cause removals cancel parent-child heartbeats, Mortar
overloads tuple arrivals (child-to-parent data flow) for
summary comparisons.

First, the two nodes, A and B, exchange their current
set of installed queries, I<node>, and their current set of
cached query removals, R<node>. Each node then per-
forms the same reconciliation process. Each node com-
putes a set of install candidates IC<node> and removal
candidates RC<node>.

ICA = IB − (IB ∩ IA) − (IB ∩ RA)

RCA = IA ∩ RB

ICA represents the set of queries for which A has missed
the installation. Additionally, node A removes all queries
for which there is a matching remove in RB . Peers use
sequence numbers, issued by the object store, to deter-
mine the latest management command for a particular
query name. Node B computes ICB and RCB similarly.
At this point, IA == IB; reconciliation is complete.

The last step in this process is for the installing peer to
re-connect the operator, discovering the parent/child set
for each tree in the physical query plan. In this case, the
peer contacts the query root, who, acting as a topology
server, returns the n parent/child sets. Thus, like plan-
ning, Mortar distributes the topology service across all
query roots in the system.

7 Evaluation

Mortar has taken a different approach to adaptivity
than traditional DHT-based systems that create a single,

dynamic overlay. The ultimate purpose of our techniques
is to ensure accurate wide-scale stream processing when
node sets contain failed nodes.

Our Java-based Mortar prototype implements the Mor-
tar Stream Language and the data management, sync-
less, and recovery mechanisms. Each Mortar peer is
event driven, leveraging Bamboo’s [34] ASyncCore
class that implements a single-threaded form (based on
SFS/libasync) of the staged event-driven architec-
ture(SEDA). Other advantages of this low-level integra-
tion include UdpCC, a congestion-controlled version of
UDP, and their implementation of Vivaldi [12] as the
source of network coordinates5. We use the X-Means
data clustering algorithm to perform planning [30]. Be-
yond the usual in-network operators, the prototype sup-
ports a custom trilateration operator for our Wi-Fi loca-
tion service. Last, aggregate operator results include a
completeness field.

We evaluate Mortar primarily on a local-area emula-
tion testbed using ModelNet [39]. A ModelNet emula-
tion provides numerous benefits. First, it tests real, de-
ployable prototypes over unmodified, commodity operat-
ing systems and network stacks. A Mortar configuration
running over our local cluster requires no code changes
to use ModelNet; the primary difference is that, in Mod-
elNet, network traffic is subjected to the bandwidth, de-
lay, and loss constraints of an arbitrary network topology.
Running our experiments in this controlled environment
allows direct comparison across experiments. 34 phys-
ical machines, running Linux 2.6.9 and connected with
gigabit Ethernet, multiplex the Mortar peers.

Unless stated otherwise, ModelNet experiments run
across an Inet-generated network topology with 34 stub
nodes. We uniformly distribute 680 end nodes across
those stubs, emulating small node federations. All link
capacities are 100 Mbps, the stub-node latency is 1 ms,
the stub-stub latency is 2 ms, the stub-transit latency is 10
ms, and the transit-transit latency is 20 ms. The longest
delay between any two peers is 104 ms. Each mortar
query uses four trees and a branching factor of 16.

7.1 Query installation

Ultimately, query results are only as complete as the
operator installation coverage. Reconciliation should in-
stall queries across all live, reachable nodes within a
node set, even when a significant fraction of the set is
down. Here we use a query that sources 680 nodes, but
disconnect a random node subset before installation.

Figure 11 shows both the rate and coverage of query
installation. Recall that while installation is a multicast
operation, it is “chunked”, i.e., the installer splits the tree
into separate pieces and installs them in parallel. Our ex-
periments use 16 chunks, and with no failures, it takes
less than ten seconds to install 680 nodes. We recon-
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Figure 11: Query installation behavior across 680 nodes with
inconsistent node sets.
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Figure 12: Coverage as a function of the number of trees.

nect all nodes after 30 seconds. Note that reconciliation
runs every third heartbeat, i.e., every six seconds, and
this results in the slower rate of installation when using
reconciliation. However, as predicted by the simulations
in Section 2.1, reconciliation installs operators on 54.5%
of all nodes even when 40% of nodes are unreachable,
resilience similar to that achieved by multipath routing.

7.2 Failure resilience

With the operators successfully installed, the system
must now route data from source to query root, avoiding
network and node failures. Here our goal is to study how
Mortar responds to failures of “last mile” links. Unless
mentioned otherwise, these microbenchmarks deploy a
sum query that subscribes to a stream at each peer in
the system, counting the number of peers. Mortar uses a
time window with range and slide equal to one second.
A sensor at each system node produces the integer value
“1” every second.

7.2.1 The impact of tree set size

Increasing the tree set size improves failure resilience
as additional trees add more overlay paths. Here we mea-
sure the resiliency additional sibling trees provide and
discuss the overhead that comes with it.

Figure 12 plots query completeness as a function of
the percentage of disconnected nodes in the system. Here
each data point is the average of five runs, each run last-
ing three minutes. The first thing to note is that with
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Figure 13: System scaling is directly proportional to the num-
ber of unique children at each peer. This plot illustrates sharing
across sibling and primary trees as the number of queries in-
crease.

four trees, query results reflect most live nodes, achiev-
ing perfect completeness for 10 and 20% failures. For
30% and 40% failures, Mortar’s results include 98% and
94% of the remaining live nodes respectively. This is
nearly identical to the results from our simulation and
attest to the ability of our sibling tree construction algo-
rithm to create overlay path diversity that approaches that
of random trees. Secondly, this appears to be the point
of diminishing returns, as five trees provides small addi-
tional improvements in connectivity.

Note that each additional tree increases background
heartbeat traffic by adding to the number of unique
parent-child pairs in the tree set6. However, the same
heartbeats may be used across the trees in different
queries. Figure 13 shows the number of unique children
that a given node must heartbeat as a function of the num-
ber of queries in the system. Here there is a query for ev-
ery peer, and that query aggregates over all other nodes.
Empirically, overhead scales sub-linearly with both ad-
ditional queries, and additional siblings per query. In
the first case, repeated clusterings on the same coordi-
nate set result in similar primary trees across queries. In
the second case, adding a single sibling (2 trees total)
roughly doubles the overhead of using a single, primary
tree. However, three additional siblings (4 trees total)
does not double the overhead of using two trees, but re-
sults in a 50% relative increase. This is due to our sibling
construction algorithm constraining the possible children
a node can have.

7.2.2 Responsiveness

A best-effort system should provide accurate answers
in a timely fashion. We first explore the impact of tran-
sient “rolling” failures. These time-series experiments
disconnect a percentage (10, 20, 30, and 40%) of random
nodes for 60 seconds, and then reconnect them. Note that
result completeness is identical to that seen in Figure 12
for four trees; here the point is to assess the impact of
failure on result latency, completeness, tuple path length,
and total network load, the sum of traffic across all links.
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Figure 14: Accuracy and total network load for Mortar during
rolling failures of 10,20,30, and 40% of 680 nodes.

Here, result latency is the time between when the result
was due and when the root operator reported the value.

Figure 14 shows that Mortar responds quickly to fail-
ures, returning stable results on average 7 seconds after
each failure. This is a function of our heartbeat period (2
seconds), and appears independent of the number of fail-
ures. The system captures the majority of the data with
an average result latency of 4.5 seconds. Our branching
factor of 16 results in a tree of height 4, which is the path
length when there are no failures. Even during 40% fail-
ures, the majority of tuples can route around failures with
three extra overlay hops. The steady-state network load
is 12.5 Mbps (3.4 Mbps of which is heartbeat overhead).
As a point of comparison, the same experiment without
aggregation incurred twice the network load (26 Mbps).

Finally, while not precisely churn, a query should still
be resilient to nodes cycling between reachable and un-
reachable states. Figure 15 shows results where we ran-
domly disconnect 10% of the nodes. Then, every 10 sec-
onds, we reconnect 5% of the failed nodes and fail an ad-
ditional, random 5%. Mortar always reconnects all live
nodes before the 10 seconds are up. Result latency, net-
work load, and tuple path length are similar to that seen
in the rolling failures experiment.

7.2.3 Comparing to a DHT-based system

We compare Mortar to SDIMS [41], an information
management system built over the Pastry DHT [35]. We
chose SDIMS because of considerable support from its
authors, including providing us with a version that uses
the latest FreePastry release (2.0 03). This was critical,
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Figure 15: Query accuracy across 680 nodes on an Inet topol-
ogy during 10% churn.
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Figure 16: Query accuracy and total network load for SDIMS
for 680 nodes. Though we probe five times less often, the
steady-state bandwidth is five times greater for the same query.

as it provides routing consistency and explicitly tests for
network disconnections7. Since SDIMS is a “snapshot”
in-network aggregation system, we continuously issue
probes to emulate a streamed result.

Figure 16 shows query results and total network load
for an SDIMS experiment using 680 peers across the
same topology. We fail nodes in an identical fashion, but
the down time is 120 instead of 60 seconds. The SDIMS
update policy ensures that only the root receives the ag-
gregate value, the ping neighbor period is 20 seconds,
the lease period is 30 seconds, leaf maintenance is 10
seconds and route maintenance is 60 seconds. SDIMS
nodes publish a value every five seconds and we probe
for the result every 5 seconds.

Accurate results at the beginning of the experiment
soon give way to highly variable results during even low
failure levels. Failures appear to generate over count-
ing as completeness exceeds 100%, hitting almost 180%
by the end of the experiment. Probe results remain in-
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Figure 17: Interconnecting operators across Internet-like
topologies. This shows the average latency to the root for the
90th percentile of nodes in the query.

accurate through the end of the experiment, even after
all nodes have re-connected. Increasingly large discon-
nections cause bandwidth spikes as the reactive recov-
ery mechanism engages larger numbers of peers. The
steady-state bandwidth usage is 67 Mbps (9 Mbps of
which is Pastry overhead); this is 5.3 times as much as
Mortar, which produces results with five times the fre-
quency. We hypothesize that the large difference in band-
width usage is due to a lack of in-network aggregation, as
nodes fail to wait before sending tuples to their parents.

As mentioned previously, SDIMS poor accuracy is
likely due to its dependence on the underlying DHT for
adaptation. Aggressive leaf set and route table mainte-
nance frequencies had little effect.

7.3 Network-aware queries

This section evaluates the ability of our primary and
sibling tree building algorithms (physical dataflow plan-
ner) to place data within a low-latency horizon around
the root operator. Experiments use an aggregate query
across 179 randomly chosen nodes over the Inet topol-
ogy. Vivaldi runs for at least ten rounds before inter-
connecting operators. We then generate 30 random, pri-
mary(planned), and derived (sibling) trees for branching
factors (bf) of 2, 4, 8, 16, and 32. For each tree we cal-
culate the latency, across the overlay, from each operator
hosting peer to the root operator. This represents the min-
imum amount of time for a summary tuple from that peer
to reach the query root.

Figure 7.3 distills our data to make a quantitative as-
sessment of our planning algorithm. Across each set of
30 graphs, we calculate the average 90th percentile peer-
to-root latency. The amount of time the root must wait
before it can have a 90% complete value is proportional
to this average. First, our recursive cluster planner im-
proves upon random by 30 to 50%. Second, our sibling
tree algorithm preserves the majority of this benefit for a
range of branching factors.

7.4 The Wi-Fi location service

As a proof of concept we have designed a Wi-Fi device
tracking service using the local Jigsaw wireless moni-
toring system [9] as the source for authentic workloads.
Here Wi-Fi “sniffers” create tuples for each captured
802.11a/g frame, containing the relative signal strength
indicator (RSSI) measured by the receiver. At each snif-
fer a select operator filters frames for the target source
MAC address. A topk query finds the three “loudest”
frames (largest RSSI) received by the sniffers. Finally,
a custom trilat operator takes the resulting topK
stream and computes a coordinate position based on sim-
ple trilateration, given the coordinates of each sniffer8.

Unfortunately the Jigsaw sniffers have limited RAM,
and cannot accommodate the footprint of our JVM. In-
stead, we emulate the 188 Wi-Fi network sniffers across
the ModelNet testbed; each Mortar peer hosts a “Wi-Fi”
sensor that replays the captured frames in real time. The
topology is a star with 1 ms links (2 ms one-way delay
between each sniffer). Here the primary benefit of phys-
ical planning is path diversity, not result latency.

In our experiment, a user circled the four building
floor, from the fourth to the first, while downloading
a file to their laptop. Figure 18 plots the coordinate
stream (×’s); our naive scheme had trouble distinguish-
ing floors, and we plot the points on a single plane. How-
ever, this simple query returns the L-shaped path of the
user, even distinguishing hallways. Relative to a query
that did not allow the TopK to aggregate (bf=188) (but
still performing the distributed select), the Mortar query
resulted in a 14% decrease in total network load. Without
such a selective filter, traditional summary traffic statis-
tics would yield savings similar to those seen in our mi-
crobenchmarks.

8 Related work

Mortar’s data model is related to prior work on paral-
lelizing operators, as it allows replicas to process differ-
ent portions of the same stream. For instance, Flux [37]
may partition the input for a hash-join operator using the
hash of the join key. Other systems may try to auto-
matically partition the data based on observed statistical
properties [6]. However, time-division data partitioning
is independent of data content and operator type.

A number of wireless sensor systems employ forms of
multipath tuple routing for in-network aggregates. While
TAG proposed statically striping data up a DAG [21], two
other wireless in-network aggregation protocols, synop-
sis diffusion [28] and Wildfire [5] allow dynamic multi-
path routes. Like Mortar, synopsis diffusion de-couples
aggregation (for Mortar, merging) and tuple routing, al-
lowing tuples to take different paths towards the root
operator. While diffusion allows tuples to be multicast
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Figure 18: The position of a Wi-Fi user circling the hallways
of the UCSD Computer Science department. ×’s represent
query results, stars Wi-Fi sensors.

along separate paths, Mortar’s data model requires the
absence of duplicate summaries. What Mortar offers
in its place is a straight-forward operator programming
interface. This is in contrast to the special duplicate
and order-insensitive operators required of both wireless
routing schemes.

The role of Mortar’s physical operator mapping is to
interconnect operators to create a set of efficient, yet di-
verse routing paths. Recent work in “network-aware” op-
erator placement tackles a similar problem: placing un-
pinned operators, those that can be mapped to any node
in the network, to reduce network load [32, 1]. For exam-
ple, SBONs [32] use distributed spring relaxation across
a cost space combining both network latency and oper-
ator bandwidth usage. Our scheme would benefit from
their insights in adapting to operator bandwidth usage.

The time management framework proposed in [38]
is close in spirit to our syncless mechanism. In that
model, a centralized stream processor sources external
streams that may have unsynchronized clocks and expe-
rience network delays. The system continuously gener-
ates per-stream heartbeats that guarantee that no tuple
arrives with a timestamp less than τ . However, deter-
mining each τ requires the construction of an nxn (n is
the number of streams) matrix whose entries bound the
relative clock offset between any two sources. Filling
the matrix requires potentially complicated estimations
of offset bounds. In contrast, Mortar’s syncless mecha-
nism ignores offset altogether, using ages to both order
tuples and calculate the operator’s timeout.

Using multiple trees for increased failure-resiliency
has been explored in both overlay and network-layer
routing. For example, SplitStream builds a set of interior-
node disjoint (IND) trees for the multicast group to bal-

ance load and improve failure resilience. They ensure
the trees are IND by leveraging how the Pastry DHT per-
forms routing [7]. Like Mortar, SplitStream sends a sep-
arate data stripe down each tree, but the system drops
stripe data when encountering failed nodes. An area of
future investigation is determining dynamic tuple strip-
ing rules for multicasting across a static tree set.

Finally, Motiwala et al. recently proposed a technique,
Path Splicing, to improve end-to-end connectivity at the
network level [23]. In this scheme, nodes run multiple
routing protocol instances to build a set of routing trees;
the trees are made distinct by randomly permuting in-
put edge weights. Like Mortar, nodes are free to send
packets onto a different tree when a link fails. Their pre-
liminary results show that five trees extracts the majority
of the available path diversity, agreeing with ours. While
they hypothesize whether such a scheme eliminates the
need for dynamic routing in the general case, our exper-
iments indicate that it does for the many-to-one commu-
nication patterns in our stream processing scenarios.

9 Conclusion

Mortar presents a clean-slate design for wide-scale
stream processing. We find that dynamic striping across
multiple static physical dataflows to be a powerful tech-
nique, allowing up to 40% of the nodes to fail before
severely impacting result streams. Because time-division
data partitioning logically separates stream processing
and tuple routing, Mortar sidesteps the failure resilience
issues that affect current data management systems built
over DHT-based overlays. Finally, by reducing the de-
pendence on clock synchronization, Mortar can accu-
rately operate in environments where such mechanisms
are mis-configured or do not exist. While it is certain that
new issues will arise when deploying a query across a
million nodes, Mortar is a significant step towards build-
ing a usable Internet-scale sensing system.
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Notes
1We borrow definitions of skew (differences in clock frequency)

and offset (difference in reported time) from the network measurement
community [22].

2It is a text-based version of the “boxes and arrows” query specifi-
cation approach [10, 4].

3α = 10% worked well in practice.
4What variations exist are due to the random placement of offset

across the nodes for each test.
5Experiments use 3-dimensional coordinates.
6In the worst case each tree adds O(N) pairs globally and O(bf )

at involved peers. N is the node set size and bf the branching factor.
7Experiments with PIER [18] showed that it was badly affected by

the dynamism in the Bamboo DHT’s [34] periodic recovery protocols.
The PIER authors have made similar observations [17].

8We are not innovating here; more advanced methods exist but
could use similar queries.
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