
Remote Profiling of Resource Constraints of Web Servers Using
Mini-Flash Crowds

Pratap Ramamurthy
UW-Madison

Vyas Sekar
CMU

Aditya Akella
UW-Madison

Balachander Krishnamurthy
AT&T–Labs Research

Anees Shaikh
IBM Research

Abstract
Unexpected surges in Web request traffic can exercise
server-side resources (e.g., access bandwidth, process-
ing, storage etc.) in undesirable ways. Administra-
tors today do not have requisite tools to understand the
impact of such “flash crowds” on their servers. Most
Web servers either rely on over-provisioning and admis-
sion control, or use potentially expensive solutions like
CDNs, to ensure high availability in the face of flash
crowds. A more fine-grained understanding of the per-
formance of individual server resources under emulated
but realistic and controlled flash crowd-like conditions
can aid administrators to make more efficient resource
management decisions. In this paper, we present mini-
flash crowds (MFC) – a light-weight profiling service
that reveals resource bottlenecks in a Web server infras-
tructure. MFC uses a set of controlled probes where an
increasing number of distributed clients make synchro-
nized requests that exercise specific resources or portions
of a remote Web server. We carried out controlled lab-
based tests and experiments in collaboration with oper-
ators of production servers. We show that our approach
can faithfully track the impact of request loads on dif-
ferent server resources and provide useful insights to
server operators on the constraints of different compo-
nents of their infrastructure. We also present results from
a measurement study of the provisioning of several hun-
dred popular Web servers, a few hundred Web servers of
startup companies, and about hundred phishing servers.

1 Introduction

As Web-based applications on the Internet grow in pop-
ularity, their providers face the key challenge of deter-
mining how to provision server-side resources to pro-
vide consistently good response time to users. Ideally,
these resources, such as processing and memory capac-
ity, database and storage, and access bandwidth, should
be provisioned to deliver satisfactory performance under
a broad range of operating conditions. Since an opera-
tor’s ability to predict the volume and mix of requests is

often limited, this can be difficult. Hence, large providers
who can afford it typically resort to over-provisioning, or
employ techniques such as distributed content delivery or
dynamic server provisioning, to minimize the impact of
unexpected surges in request traffic. Smaller application
providers may trade-off robustness to large variations in
workload for a less expensive infrastructure that is provi-
sioned for the expected common case.

This approach still leaves operators without a sense
of how their application infrastructure will handle large
increases in traffic, due to planned events such as annual
sales or Web casts, or unexpected flash crowds. While
these events may not occur frequently, the inability of the
infrastructure to maintain reasonably good service, or at
least degrade gracefully, can lead to significant loss of
revenue and dissatisfied users. Without comprehensive
stress testing that would likely disrupt service, there is
no way for providers today to observe the performance of
their sites under heavy load in a controlled way to inform
their preparation for unexpected traffic increases.

In this paper, we present the design, implementation
and evaluation of a new profiling service that helps oper-
ators better understand the ability of their Internet appli-
cations to withstand increased request load. Our mini-
flash crowd (MFC) mechanism sheds light on bottle-
necks in the application infrastructure by quantifying the
number and type of simultaneous requests that affect re-
sponse time by taxing different parts of the server set-up.
Using the service, an application provider can compare
the impact of an increase in database-intensive requests
versus an increase in bandwidth-intensive requests. The
operator could then make better decisions in prioritizing
additional provisioning, or take other actions (e.g., intro-
duce request shaping).

The MFC technique is based on a phased set of sim-
ple, controlled probes in which an increasing number
of clients distributed across the wide-area Internet make
synchronized requests to a remote application server.
These requests attempt to exercise a particular part of the
infrastructure such as network access sub-system, stor-
age sub-system, or back-end data processing subsystem.
As the number of synchronized clients increases, one or

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 185

more of these resources may become stressed, leading
to a small, but discernible and persistent, rise in the re-
sponse time. Inferences can now be made about the rela-
tive provisioning of the resources. The number of clients
making simultaneous requests is increased only up to a
set maximum – if no change in the response time is ob-
served, we label the application infrastructure as uncon-
strained. Such a conservative approach allows MFC to
reveal resource constraints while limiting its intrusive-
ness on the tested sites.

The MFC technique can be thought of as a “black-
box” approach for determining the resource limitations
of a Web server, or for uncovering performance glitches,
vulnerabilities, and configuration errors. The salient fea-
tures of the approach are: (i) light-weight requests that
have minimal impact on, and involvement from, pro-
duction servers; (ii) use of real, distributed clients that
test the deployed application infrastructure while accu-
rately reflecting client access bandwidth and the effects
of wide-area network conditions; and (iii) ability to work
with a broad range of Web applications with little or
no modification, while providing some tunability to run
more application-specific tests.

We validate the effectiveness of MFC in tracking
server response times using synthetically generated re-
sponse time curves (i.e., as a function of the request
load). We also study the ability of MFC to exercise spe-
cific server resources by running experiments against a
real Web application in a controlled lab setting.

Beyond the MFC technique itself, a principal contribu-
tion of the paper is an application of the MFC service to a
top-50 ranked commercial site and three university sites
with the active cooperation of the site operators. The op-
erators gave us the server logs for the experiments – we
ascertained that MFC requests were well-synchronized
and studied the impact of background traffic on MFC.
The operators confirmed MFC’s non-intrusive nature and
found it very useful in uncovering new (or confirming
suspected) issues with their infrastructure.

The lab-based experiments and experiments on co-
operating sites demonstrate the usefulness of applying
MFCs to production Web applications. They also show
that the granularity of information that black-box test-
ing can reveal is limited. MFCs are able to isolate re-
source constraints at a “sub-system” level, such as the
storage subsystem and database access subsystem, which
includes both hardware and software components of the
sub-systems. However, providing finer-grained informa-
tion to pinpoint if the constraint is due to a hardware
limitation or software misconfiguration within the sub-
system is difficult. This may require operator input and
some site-specific changes to the MFC approach.

We also applied MFC to characterize a large number
of production Web sites, classified according to their as-

signed ranking by a popular Web rating service [19]. Our
empirical results show a high degree of correlation be-
tween a site’s popularity and it’s ability to handle a surge
of either static, or database-intensive requests. Band-
width provisioning is less well-correlated, however, with
many less-popular sites having better provisioned access
bandwidth than might be expected. Finally, we also
present a preliminary study of the application of MFCs
to other special classes of Web sites, including startup
companies and sites belonging to phishers.

Although our initial application of MFCs focuses on
determining how unexpected request surges affect per-
ceived client performance, the approach can be useful in
a number of other scenarios. MFCs could be used to
perform comparative evaluations of alternate application
deployment configurations, e.g., using different hosting
providers. By tuning the request arrival pattern of clients,
MFCs can be used to evaluate the impact of different re-
quest shaping mechanisms.

Section 2 describes the MFC design and implemen-
tation, and several practical issues. In Section 3, we
discuss our validation study. We report on our expe-
rience running MFC with cooperating commercial and
academic sites in Section 4. We describe the results of a
large-scale study of production sites in Section 5. In Sec-
tion 6, we discuss some extensions to MFC. We discuss
related work in Section 7 and conclude in Section 8.

2 Mini-Flash Crowds

In this section, we describe the design and implementa-
tion of the Mini-Flash Crowd (MFC) approach. First,
we discuss the key design requirements and the chal-
lenges in meeting these requirements. We then present
an overview of MFC’s operation. Finally, we discuss im-
plementation details and key practical issues.

2.1 Solution Requirements and Challenges

Our goal is to develop a mechanism that gives applica-
tion providers useful information about the limitations of
their server resources. The foremost requirement from
such a mechanism is that it should accurately reflect
the application’s performance under realistic load con-
ditions; i.e., the information should be representative of
a real flash-crowd like situation. While laboratory load
testing is no doubt useful, it is difficult to re-create all of
the dependencies of an Internet-facing live deployment
in the lab. Traditional benchmarking approaches or load
generation tools (e.g., [24]) used to test Web applications
in controlled LAN settings cannot reveal effects of wide-
area conditions or characteristics of the actual Internet
connectivity of the clients (e.g., speed, location, diversity

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association186

etc.). More importantly, such laboratory-based experi-
ments cannot help operators assess the impact of access
infrastructure - e.g., how the bandwidth limits the per-
formance of clients under overload, and how bandwidth-
imposed constraints compare against constraints on other
server-side resources.

Second, the mechanism must be tunable to tailor the
characterization to specific operational goals. Some ap-
plications (e.g., software binary distribution) may be tol-
erant to large increases in response time. Others may be
more sensitive to small increases in response time; for in-
stance, it may be important to know that a 10% increase
in volume of search queries caused a search engine’s re-
sponse time to increase by 250ms.

Finally, the approach must be automatic. It must re-
quire minimal (if any) input from operators about the
specifics of the application and infrastructure. This re-
quirement is crucial to deploy MFC as a generic network
service that any content provider can sign up for and use.
This requirement can be relaxed when server operators
cooperate in running experiments.

The above requirements raise two challenges. First, it
is challenging to develop a generic request workload that
can remotely exercise specific resources or sub-systems
on production server infrastructures. Second, it is diffi-
cult to exercise tight control on the load imposed on the
application infrastructure so as to not cause an undesir-
able impact on the regular request workload at the server.
Such tight control is particularly difficult to achieve when
using a set of distributed clients whose requests may be
affected unpredictably by the wide-area.

We use two simple insights to address these chal-
lenges. First, to exercise specific server resources, we
issue concurrent requests for a particular type of con-
tent. For example, to exercise a server’s network con-
nection, we can make concurrent requests for “large”
objects hosted at the server (e.g., binary executables,
movie files). As we show later, this simple approach
can help us isolate the impact to the granularity of server
sub-systems, which include both hardware and software
components of the sub-systems. To minimize the need
for server-side input and to ensure generality of the ap-
proach, we crawl the content hosted on the server and
automatically classify it into different content categories,
using heuristics such as file name extensions and file
sizes. Second, to achieve tight control over the load on
the server sub-systems, we schedule client requests in a
centrally coordinated manner using measurements of the
network delay between each client and the target server.

2.2 Overview of the MFC Methodology

The MFC setup has a single coordinator orchestrating
an MFC on a target server (Figure 1). At the coordi-

nator’s command, a specified number of participating
clients send synchronized requests to the target server.
The clients log the response times for their requests and
send this information to the coordinator. The coordinator
uses the feedback from clients to determine how to run
the MFC, to infer resource constraints, and to stop the
MFC. The MFC experiment consists of an optional pro-
filing step followed by several probing or measurement
phases.

Figure 1: Structure of a Mini-Flash Crowd experiment.

2.2.1 Profiling target content

The profiling stage precedes an MFC run against a
non-cooperating server, and is optional for cooperating
servers. In this stage, the coordinator crawls the target
site and classifies the objects discovered into a number of
classes based on content-type, for example, regular/text
(txt, HTML files), binaries (e.g., .pdf, .exe, .tar.gz files),
images (e.g., .gif, .jpg files), and queries.

The discovered objects are also classified into two cat-
egories based on the reported object sizes (obtained by
issuing a HEAD request for files and GET request for
queries): Large Objects and Small Queries. These cate-
gories are selected for their expected impact on specific
server resources or sub-systems (more details below).

The Large Objects group contains regular files, bina-
ries, and images greater than 100KB in size. We iden-
tify URLs that appear to generate dynamic responses
(queries) and select queries that generate a response un-
der 15KB. These constitute the Small Queries group.
Note that a small query is not necessarily a “form”, but
an URL with a “?” indicating a CGI script.

2.2.2 MFC Stages

After the profiling step is completed, the coordinator runs
the MFC experiment in stages. In each stage, the MFC
makes a varying number of synchronized requests for ob-
jects from a specific request category.

In the Large Object stage, clients request the same
large object simultaneously, primarily exercising the
server’s network access bandwidth. We use a fairly large
lower bound (100KB) on the size of the Large Object to
allow TCP to exit slow start and fully utilize the available

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 187

network bandwidth. Since we request the same object,
the likely caching of the object reduces the chance that
the server’s storage sub-system is exercised.

In the Small Query stage, each client makes a request
for a unique dynamically generated object if available;
else all clients request the same dynamic object. Since
such queries often require interactions and computations
using a back-end database, we expect that this stage
will affect the back-end data processing sub-system and
possibly the server CPU. We use a small upper bound
(15KB) on the response size so that the network band-
width remains under-utilized.

Finally, in the Base stage, clients make a HEAD re-
quest for the base page hosted on the target servers (e.g.,
index.html or index.php). This provides an estimate of
basic HTTP request processing time at the server.

2.2.3 Epochs

Each stage of a MFC experiment consists of several
Epochs. In epoch k, the coordinator directs Nk partici-
pating clients to issue concurrent requests of a given cate-
gory to the target. Clients participating in epoch k consti-
tute a crowd. The coordinator determines the particular
object Oi,k that client i should request in an epoch k. The
coordinator runs each MFC stage for a preset maximum
number of epochs kmax.

Before Epoch 1, each participating client i measures
the base response time for downloading the objects
Oi,1, . . . , Oi,kmax

from the target. Clients make these
measurements sequentially so that they do not impact
each other’s base response time estimates.

At the end of each epoch, each client reports the nor-
malized response time (observed response time for the
request − base response time for the same request) to
the coordinator. Successive epochs are separated by
∼ 10s. Based on the clients’ response times for requests
in epochs 1..i, the coordinator either terminates the stage,
or moves to epoch i + 1. The coordinator uses the fol-
lowing simple algorithm to decide the next step:

1. Check: For the Base and the Small Query stages,
if the median normalized response time reported by the
clients in epoch i is greater than a threshold θ, the MFC
enters a “check” phase. We use the median to counter
the impact of noise on the response time measurements.
If the median normalized response time is Xms, this im-
plies that at least 50% of the clients observed an Xms
increase in their response time for the request.

The goal of the check phase is to ascertain that the
observed degradation in response time is in fact due to
overload on a particular server sub-system, and not due
to stochastic effects. To verify this, coordinator creates
three additional epochs, one numbered “i-” with Ni − 1

clients, and the other numbered “i+” with Ni +1 clients,

and a third epoch which is a repeat with Ni clients. As
soon as the median normalized response time in one of
these additional epochs exceeds θ, the coordinator ter-
minates the MFC experiment, concluding that a limita-
tion has been found within the sub-system. If there is no
visible degradation in any of the additional epochs, the
check fails and the MFC progresses to epoch i + 1.

Recall that the Large Object stage is designed to exer-
cise the server’s outgoing access link bandwidth. How-
ever, depending on where the MFC clients are located
relative to the target, the paths between the target and
many of the MFC clients may have bottleneck links
which lie several network hops away from the target
server. In such cases, the median increase in response
time may reflect an increase in the load on the shared
network bottlenecks, and not necessarily on the server’s
outbound access link. To counter this, we require that a
larger fraction of the clients (specifically, 90% of them)
observe > θ increase in the response time in the Large
Object stage.

In general, for any MFC stage, we can infer sub-
system resource provisioning more accurately by rely-
ing on the 90th percentile as described above. However,
it has a downside relative to using the median: we may
now have to load the server’s resources a bit longer be-
fore drawing an inference. As a trade-off between the re-
quirement to be unobtrusive and the goal to accurately in-
fer the constraints, we use the 90th percentile only for the
Large Object stage, and use the median for other stages.

2. Progress: If there is no perceptible increase in the
target’s response time, or the check phase fails, the coor-
dinator progresses to the next epoch where a larger num-
ber of clients participate. To ensure that the target does
not face sudden load surges, the coordinator increases the
size of the crowd by a small value (we choose this to be
5 or 10 in our experiments).

3. Terminate: If the check phase succeeds, or the
number of participating clients exceeds a threshold, the
coordinator terminates the experiment. In the latter case,
the coordinator concludes that no limitations could be in-
ferred for the particular resource or sub-system.

2.2.4 Synchronization

In a given epoch, the load on the target server is propor-
tional to the number of concurrent requests it is serving,
which directly determines the server’s response time. An
important requirement is that when k clients participate
in an epoch, the number of concurrent MFC requests
at the server is ≈ k. One can imagine implementing
a distributed synchronization protocol among the clients
that can guarantee this property, but this introduces a lot
of complexity. Instead, we rely on simple techniques
that achieve reasonable synchronization by leveraging

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association188

CLIENTS REGISTER
1. Obtain list of active client machines 1..k
2. If k < 50, abort
3. Repeat next two steps for each stage

DELAY COMPUTATION
For clients i=1..k, Compute T(coord,i)
For clients 1..k

1. Instruct client i to request object from target
2. Client i computes T(i, target) and base response

time for the object and reports to server

MFC EPOCHS
Let P(e) indicate number of clients in epoch e. If e1 > e2, then P(e1) > P(e2)
For epochs 1..kmax

1. Schedule a crowd of size P(e) (P(e) clients randomly
selected from k) based on T(coord,i) and T(i, target) measurements

2. Wait 10s after all clients are scheduled, then poll each client for
experiment data – (client ID, HTTP code, numbytes, response time)

3. Compute median increase in response time for all clients
4. If median increase in response time exceeds 100ms

If P(e) < 15, Move to next epoch
Else

a. Schedule three crowds of sizes P(e) -1, P(e) and P(e) + 1
b. If median response time in one of three cases P(e), P(e-1)

and P(e+1) exceeds 100ms
Return crowdsize P(e)
Terminate MFC stage.

c. Else
Move to next epoch.

CLIENT REGISTER
1. Register with coordinator by sending a
message including client ID to a fixed
port on coordinator.
2. Listen for coordinator commands on
port P

DELAY COMPUTATION
1. Respond to Ping from coordinator
2. Request object from target
3. Compute T(i, target) and base response

time for the object
4. Report the two to the coordinator

MFC EPOCHS
Upon receiving a command from the coordinator:
1. Request object from target
2. If full response not received by 10s

Kill the request, and set code=ERR, and response time=10s
3. Else

Record (numbytes, HTTP status code, response time)
4. In response to coordinator’s poll for data send (clientID, HTTP code,

numbytes, response time)

(a) Coordinator (b) Client

Figure 2: Figure outlining our implementation of the MFC approach.

the centralized coordinator to schedule client requests.
To ensure synchronization, the coordinator issues a

command to the clients at the beginning of the exper-
iment to measure the round-trip latency to the target
server. Client i then reports the round-trip delay T

target
i

to the coordinator. The coordinator also measures its
round-trip delay to each client T coord

i . Using these mea-
surements, the coordinator schedules client requests so
that they arrive at the server at roughly the same time T .
Note that the actual HTTP request arrives at the server
roughly at the same time as the completion of the 3-
way SYN hand-shake. To synchronize client request ar-
rivals, the coordinator issues a command to client i at
time T − 0.5 ∗T coord

i − 1.5 ∗T
target
i . Assuming that the

latency between the coordinator and the clients has not
changed since the initial latency estimate, client i will
receive this command at time T − 1.5 ∗ T

target
i ; at this

time, client i issues the request specified in the command
by initiating a TCP hand-shake with the server. Again,
assuming client-target latency does not change, the first
byte of client i’s HTTP request will arrive at the target
at time T . Since an MFC experiment spans only a few
minutes, we believe that assuming that network latencies
are stationary over this time-span is reasonable [26].

2.3 Implementation Specifics

We have implemented the MFC approach as described
above. We use hosts from PlanetLab as the MFC clients.
Our coordinator runs on an off-the-shelf Linux host lo-
cated at UW-Madison. Figures 2(a) and (b) provide ad-
ditional details of the functioning of clients and the co-
ordinator. While these largely reflect the discussion in
Section 2.2, a few points are worth noting.

Before conducting an MFC experiment, the coordina-
tor checks if at least 50 distinct clients are available to
run the experiment (see Figure 2(a)). The coordinator
does this by verifying if at least 50 clients respond suffi-
ciently quickly (within 1s) to a probe message. If not, the
experiment is aborted. This check is important because
with a small number of participating clients, we cannot
claim that the MFC captures realistic wide-area condi-
tions faced by generic Web clients accessing the target
server. Ideally, we should also factor in the geographic
locations of the clients, i.e., ensure that the active clients
are well spread out. Our current implementation does not
enforce this requirement.

Note that in order for the median and the 90th per-
centile response time measurements in an epoch to be
statistically significant and robust to noise, we need a suf-
ficient number of clients to be participating in the epoch
in the first place. We choose this number to be 15. Thus,
for all initial epochs where fewer than 15 clients partic-
ipate in the measurement, the coordinator automatically
progresses to the next epoch irrespective of the degrada-
tion in the response time observed in the current epoch.

Note also that the participating clients within each
epoch are chosen at random (see Figure 2(a)). This is im-
portant to ensure that an observed increase in the median
response time is purely due to an increase in the number
of participating clients at the server, and not due to the
local conditions experienced by the clients themselves
(e.g., transient congestion or due to load on a client).

The client-side functionality is simple (Figure 2(b)).
The client listens for commands from the coordinator
and fires off HTTP requests as soon as a command is re-
ceived. Clients timeout 10s after issuing an each HTTP
request (see Figure 2(b)). Thus, if the target takes more

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 189

than 10s to completely respond to a request, the client
kills the request and records a response time of 10s. The
client computes the normalized response time as before
and sends this to the server. This is to ensure that each
epoch spans a bounded amount of time.

Since the timeliness of the communication between
the coordinator and clients is important for synchroniza-
tion, we use UDP for all control messages. We did not
implement a retransmit mechanism for lost messages.
Practical Issues: In our current implementation, all the
requests in the MFC are directed to a single server IP ad-
dress. If a server’s DNS name maps to multiple IPs, we
pick one at random and send all the MFC requests to this
single IP. Some Web sites may direct clients to different
replicas based on the clients’ geographic locations, and
in such cases the MFC will only be able to identify scal-
ing bottlenecks on the server assigned to the specific IP
address chosen, and not of the Web site as a whole.

Server-side caching could also impact the observa-
tions we draw from an MFC experiment. Many servers
cache Web objects and other clients not part of the MFC
may request the same object concurrently. Thus, even
if each MFC client requests a unique object (e.g., in the
Small Query stage), we cannot guarantee that there are
no caching effects. Thus we cannot ensure that the load
on a specific server resource or sub-system will grow
monotonically as a function of the number of requests,
and that, eventually, we will observe a perceptible in-
crease in the response time.

MFCs may require additional information to actually
confirm that requests are exercising a single specific re-
source on a server – this is a fundamental limitation of
any mechanism that relies on remote inferences. The
MFC approach as such does require any data collection
at the server. However, server-side support in instrument-
ing servers to track resource usage using utilities (such as
atop or sysstat) can offer better insights.

Background traffic at the target can also impact MFC
inferences. Thus, with non-cooperating sites, we sug-
gest running MFCs at off-peak hours. With cooperat-
ing sites, site operators can indicate whether they wish
to observe the limitations of the “raw” production infras-
tructure (under low background traffic) or the ability to
handle load surges under regular operating conditions.

3 Validation Experiments

Next, we address the following questions through exper-
iments in controlled laboratory settings: (1) Are requests
from MFC clients adequately synchronous? (2) How
well can MFC track the target’s response behavior? (3)
How effective are MFC requests at exercising intended
resources at the target?

Our experiments have highlighted a few key limita-
tions of our approach. We discuss these in Section 3.3.

3.1 Synchronization and Response Time
Tracking

To answer the first two questions, we set up a sim-
ple server (with no real content and background traffic)
running a lightweight HTTP server [3] on a 3.2 GHz
Pentium-4 Linux machine with 1GB of RAM. We in-
strument the server to track request arrival times and to
implement synthetic response time models. To run the
MFC, we used 65 PlanetLab machines as clients. The
MFC coordinator and the target are high-end machines
within UW-Madison with high-bandwidth network con-
nections.

0 5 10 15 20 25 30 35 40 45 500
10
20
30
40
50
60
70
80
90

100

Client request index
Re

qu
es

ta
rri

va
lti

m
e

(m
illi

se
co

nd
s)

Figure 3: Arrival times at target for MFC with 45 clients
Synchronization: We logged the arrival times of each
incoming HTTP request at the target server. Figure 3
shows the arrival time of each request with a crowd size
of 45 clients. In these experiments, the coordinator com-
mands the clients to make a HTTP request 15s after tak-
ing the latency measurements. About 70% of the re-
quests arrive within 5ms of each other (clients 7 through
40), and 90% of the requests arrive within 30ms of each
other (clients 3 through 43), indicating that our synchro-
nization algorithm works quite well.

0 20 40 600

100

200

300

Crowdsize

M
ed

ian
In

cr
ea

se
(m

s)

Ideal
MFC Measurement

0 20 40 600

500

1000

Crowdsize

M
ed

ian
In

cr
ea

se
(m

s)

Ideal
MFC Measurement

(a) Linear (b) Exponential

Figure 4: Tracking synthetic response time functions
Tracking Server Response Time: To validate MFC’s
ability to accurately track different server response be-
haviors, we incorporated synthetic response time models
into the validation server. Each model defines the av-
erage increase in response time (relative to the base re-
sponse time) per incoming request as a function of the
number of simultaneous requests at the server. The re-
sponse times were strictly non-decreasing functions of

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association190

the pending request queue size. We show the median
normalized response times estimated by the clients for
two models: linear (Figure 4(a)) and exponential (Fig-
ure 4(b)) (results with other models not shown here were
similar). In both cases, the median increase in response
time across the clients faithfully tracks the server’s ac-
tual response time function. This shows that MFC can
accurately reflect the impact observed by a remote server
under controlled load surges.

3.2 Understanding Resource Constraints

Next, we examine the effectiveness of MFC in exercising
specific resources at the target server. We set up a Apache
2.2 Web server (with the worker multi-processing mod-
ule) on a 3 GHz Pentium-4 machine with 1GB RAM. We
emulate a MFC on this target server with clients located
on the same LAN as the server. For each experiment
we measure the response times seen by the MFC clients
and server-side resource utilization using atop to mon-
itor the CPU, resident memory, disk access, and network
usage. We use a maximum of 50 clients.
Large objects. In the large object workload, each MFC
client requests the same 100KB object from the server.
Figure 5 shows a significant increase in the median re-
sponse time observed by the clients due to the network
load on the server. CPU, memory, and disk utilization
remain negligible during the experiment. Thus, in this
case the network bandwidth constraint is primarily re-
sponsible for the increase in response time.

5 10 15 20 25 30 35 40 45 500

200

400
Response time in ms

5 10 15 20 25 30 35 40 45 500

5000

Crowdsize

Network usage in KB

Figure 5: Same 100KB large object

Small Query workload. For emulating a dynamic ob-
ject or database query workload we set up a back end
database (details regarding the specific content hosted on
the database are not relevant for validation). During each
epoch, participating clients make the same query (thus,
the responses may be cached). Each query causes the
server to retrieve the same 50000 entries from a database
table and return their mean and standard deviation. The
query workload is not network intensive as the responses
are each less than 100B. The back end database is a
MySQL server with the query cache size set to 16MB.

We experimented with two server-side software inter-
faces for the DB back-end: the FastCGI [8] module

and Mongrel [12], a lightweight module explicitly de-
signed for handling dynamic objects. When using Mon-
grel, we noticed that the response time stays within 10ms
for crowd sizes up to 50 (not shown); the CPU utilization
and memory usage stayed constant and low. However,
an inefficiency in the FastCGI implementation1 caused
memory usage on the server to increase dramatically
with the crowd size (Figure 6). Consequently, client re-
sponse time also increased significantly.

5 10 15 20 25 30 35 40 45 500

1000

2000 Response time in ms

5 10 15 20 25 30 35 40 45 500

50

100

CPU utilization (%)

5 10 15 20 25 30 35 40 45 500

500

1000

Crowdsize

Memory usage in MB

Figure 6: Small Query workload (FCGI)

3.3 Implications

The lab-based tests confirm the potential usefulness of
the MFC approach in identifying resource constraints in
Web servers. To put the applicability of MFC in per-
spective, we discuss two important factors that can affect
MFC inferences: (i) impact of serial vs. parallel accessed
resources, and (ii) granularity of the inferences.

An increase in the observed response time in the MFC
experiment under a particular type of request can be at-
tributed to two possibilities. One is an increase in the
load on a specific server resource, where each additional
request consumes a proportional fraction of the resource.
The other is an increase due to server-side scheduling
and resource serialization constraints, where additional
requests do not impose any additional load on a resource,
but create larger-sized queues of requests waiting for the
resource (e.g., serialized access to a single disk). Such
serialization bottlenecks can impact our ability to detect
resource constraints.

Server throughput is determined by a number of fac-
tors, including hardware performance, software through-
put, and server-side components used for handling re-
quests. Our experiments show that while we may be able
to isolate resource constraints at a “sub-system” gran-
ularity (e.g., disk subsystem, database subsystem, net-
work etc), providing finer-grained information to pre-
cisely pinpoint if the constraint is a hardware or software
inefficiency is difficult, especially without operator in-
put.

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 191

MFCs are not well-suited for inferring constraints on
some types of resources, such as memory buffers, which
cause a sharp degradation in response time only when
they are exhausted. Reaching this tipping point typically
requires a very large number of simultaneous requests
which conflicts our design goal of limiting intrusiveness.
In our current MFC implementation, we sought to indi-
cate coarse-grained resource constraints as a guideline
for better server provisioning. Our validation results
demonstrate the promise of the MFC approach to achieve
this goal. Ultimately, any fine-grained analysis of re-
source constraints can be best understood when MFC is
run in cooperation with administrators managing the tar-
get server.

4 Running MFC on Cooperating Web sites

In addition to lab-based experiments, we ran MFCs on
a few cooperating commercial and academic Web sites.
The server operators provided us with access logs and
invaluable feedback on the accuracy and usefulness of
MFC inferences. The logs enabled us to check if the
requests were adequately synchronized, and examine the
volume of non-MFC traffic (background traffic) received
by the Web server during the course of our experiments.
Based on this, we can see how MFC is impacted by the
presence of various levels of background traffic volume.

4.1 Commercial Site

We worked with operators of a top-50 ranked commer-
cial Web site (according to Quantcast [19]) to cooper-
ate in our MFC experiments. The site operates a large
database serving queries for users primarily in North
America, and serves over a billion requests yearly. The
operators allowed us to test two system configurations.
One is a non-production server hosting identical content
as the production server but handling minimal traffic.
We call this server the QTNP (Quantcast Top-50 Non-
Production) server. The administrators provided logs
of all Web requests during the testing period. In addi-
tion, they also allowed us to test their production system
(which we call QTP). Hence, we were able to see some
details of how our experiments reflected on their site. In
particular, we examine the temporal distribution of the
request arrivals during our experiment (with millisecond
granularity).
MFC on QTNP: We ran multiple experiments on the
QTNP system, a subset of which are summarized in Ta-
ble 1. We ran the three stages of the MFC on September
11 and again on September 12, 2007 (first two rows). We
used a 100ms threshold for both sets of experiments.

The outcome of the experiment is similar across both
the runs. For the Base stage, we observed a 100ms degra-

Expt Base Small Qry Large Obj
details Time Crowdsize Time Crowdsize Time Crowdsize

MFC 09/11/07 25 09/11/07 55 09/11/07 NoStop
100ms (55)
MFC 09/12/07 20 09/11/07 45 09/11/07 NoStop
100ms (55)
MFC-mr 09/21/07 40 09/21/07 90 09/21/07 NoStop
250ms (150)

Table 1: Results for QTNP non-production server. MFC
traffic contributed to > 70% of all traffic at QTNP.

dation in response time when using 20-25 clients; for
Small Queries, the response time crossed the threshold
for a crowdsize of 45-55 clients. The Large Object stage
did not impact the response time in either run (in both
cases a maximum of 55 requests were issued).

We ran a slightly modified MFC, MFC-multiple re-
quest (MFC-mr), on QTNP on September 21, 2007 (re-
sults shown in the third row of in Table 1). In MFC-mr,
each participating client opens two TCP connections to
the target and sends the same request on both connections
simultaneously doubling the number of MFC requests ar-
riving at the target server.

For these experiments, we also increased the threshold
to 250ms based on the QTNP operators’ view that their
systems would not be negatively impacted by an MFC
with a higher threshold.

We had two goals in running the MFC-mr experi-
ments on QTNP: (1) to understand the system’s response
when we send a larger number of simultaneous requests
– particularly for the Large Object stage which showed
no visible degradation under the standard MFC; and (2)
to contrast the response behavior in the Base and the
Small Query stages for the 100ms threshold with a higher
250ms threshold.

For Large Object, there was again no visible degra-
dation in response time even when 150 simultaneous re-
quests were made—the response time degraded by only
a few milliseconds. This suggests that the access link is
well-provisioned and the operators confirmed this.

For the Base and the Small query stages, the QTNP
showed a 250ms degradation in response time with a
crowd size of 40 and 90, respectively. The operators
noted that the Small Query we tested involves process-
ing on multiple servers (in addition to the back end
database), and one of the servers was a known contention
point. Although the degradation in the Small Query ex-
periment confirmed a known issue, the results demon-
strate that MFCs can be used to help identify and diag-
nose resource constraints. The Base stage response time
degradation with only 40 simultaneous requests was sur-
prising to the operators.

Finally, we examined the time synchronization of
MFC-mr requests arriving at the site. We found that most
of the requests in each epoch arrived closely together,
within at most one second of each other. In a few of

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association192

Base Small Qry Large Obj
Num Num Spread Num Num Spread Num Num Spread
reqs reqs for 90% reqs reqs for 90% reqs reqs for 90%

scheduled recd of reqs scheduled recd of reqs scheduled recd of reqs

25 25 0.18 25 25 0.16 25 23 1.41
40 40 1.05 40 40 1.58 40 33 0.48
55 55 0.23 55 55 0.42 55 50 0.52
75 74 0.77 75 75 0.23 75 71 1.67

100 100 0.27 100 100 0.15 100 92 0.96
125 121 0.22 125 125 0.22 125 122 1.74
175 175 0.26 175 171 0.27 175 172 2.09
225 225 0.30 225 206 0.29 225 213 1.28
275 275 0.32 275 270 0.17 275 275 1.28
325 324 0.32 325 318 0.15 325 324 2.05
375 374 0.34 375 353 0.16 375 344 3.28

Table 2: Time spread (in secs) of MFC-mr requests to
QTP in the October 3 experiment. The first column
shows the number of requests scheduled by the coordi-
nator, the second column shows how many requests ap-
peared in the server logs, and the third column shows
the difference in timestamps for the middle 90% of all
requests in the epoch.

the epochs, a small fraction of the requests (< 10%) ar-
rived 2-3 seconds before or after the rest. We omit the
detailed results here, however we discuss the efficacy of
our synchronization in greater detail in the context of the
production QTP system below.

Overall, the site operators felt that MFC was a valu-
able tool to both analyze their local configurations and to
better understand resource limitations. Although some
of the results were known to the operators, MFC experi-
ments were able to confirm them, and also uncover pos-
sible new constraints.
MFC on QTP: We ran two experiments on the produc-
tion QTP system on September 27 and October 3, 2007
(results not shown for brevity) using MFC-mr, with one
additional modification to the latter experiment. Each
client in the first experiment made two requests in paral-
lel as with QTNP (85 client nodes were available), while
in the second experiment, each client made 5 requests in
parallel (only 75 client nodes were available).

QTP received approximately 3 million and 1.6 million
non-MFC requests respectively during our first and sec-
ond experiments. All MFC requests were directed to
a specific data center which houses 16 multiprocessor
servers in a load-balanced configuration serving the re-
quests directed to the single server IP address we used.
The server logs were collected from all 16 servers.

We found that the response times in the different
stages were not impacted by the MFC, even with MFC-
mr with 5 requests. In fact, we did not observe even a
10ms increase in the median response time. This con-
firmed that the system is well-provisioned, with multiple
high-end servers working in parallel. We knew from our
interactions with operators that the bandwidth was well-
provisioned also.

In Table 2 we examine the synchronization of MFC-

mr requests to QTP for the October 3 experiment. For
the Base and the Small Query stages, the synchronization
works well. For instance, in the last epoch of the Small
Query stage, 90% of the 353 requests (≈ 317 requests)
arrived at the server within 0.16s of each other. The syn-
chronization was not as tight for the Large Object stage,
but still reasonable with about 310 of the 344 requests
in the last epoch arriving within a 3.28s time-span; 258
requests (75% of requests) arrived within 800ms.

4.2 University Sites

We ran MFC measurements on a research group Web
server at a European University (labeled Univ-1) and
the primary Web servers of the computer science de-
partments of two US universities (labeled Univ-2 and
Univ-3). We obtained server logs of requests arriving
during the experiment time frame.
Univ-1: We ran the standard version of MFC with a
100ms threshold against the Univ-1Web server on Aug
11, 2007. The experiment ran over a 35 minute period
generating 339 out of the total of 661 (51%) HTTP re-
quests received by the Web server. During our experi-
ments the server had a low background traffic level of
about 0.15 requests/sec. For all three stages of the MFC,
we noticed that the server’s response time degraded by
more than 100ms with small crowd sizes. For the Base
and the Small Query stages, the stopping size was just
5 clients2, and for the Large Object stage the stopping
size was 25 clients. These results indicate that the server
is poorly provisioned in general, with bandwidth being
provisioned better than the rest of the infrastructure. The
site administrators confirmed that MFC experiments pro-
vided an accurate view of the server configuration, as it
is not provisioned to serve a large volume of requests
(since it hosts a relatively small number of pages). The
server logs indicate that the MFC requests arrived within
a maximum 1s of one another.
Univ-2: We measured the Univ-2 Web server at three
different times on Oct 5, 2007, using MFC-mr with a
250ms threshold (after discussions with the operators).
The Univ-2 server runs Apache version 2 and is behind
a 1Gbps link, with a relatively small amount of back-
ground traffic (maximum of 4.2 requests/sec in the morn-
ing experiment). The relative volume of background (vs.
MFC requests) traffic was 67%, 52%, 59% for the three
experiments.

From the results in Table 3(a), we see that there are a
few cases in which MFC did not result in a 250ms re-
sponse time degradation, even when using all available
clients. However, in these cases we noticed that as soon
as the number of simultaneous requests crossed 130, the
MFC caused a 150-200ms increase in the base response
time. With additional clients, it is likely that the response

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 193

Expt Base Small Qry Large Obj MFC Other
details Time Crowd Time Crowd Time Crowd Traffic Traffic

(Span) size (Span) size (Span) size (% of all) reqs/s
MFC-mr 1015 NoStop 1025 130 1035 110 2682 4.2
250ms (557s) (140) (441s) (330s) (33%)
MFC-mr 1725 150 1740 130 1755 NoStop 2829 2.9
250ms (378s) (382s) (300s) (150) (48%)
MFC-mr 2354 NoStop 0000 130 0010 110 2442 3.5
250ms (295s) (150) (354s) (333s) (41%)

Expt Base Small Qry Large Obj MFC Other
details Time Crowd Time Crowd Time Crowd Traffic Traffic

(Span) size (Span) size (Span) size (% of all) reqs/s
MFC-mr 0925 90 0935 30 0950 NoStop 1388 20.3
250ms (303s) (176s) (318s) (150) (7.9%)
MFC-mr 1605 110 1620 30 1630 NoStop 1422 18.7
250ms (330s) (173s) (285s) (130) (49%)
MFC-mr 2255 NoStop 2305 30 2320 NoStop 1543 12.5
250ms (299s) (150) (171s) (308s) (150) (13.7%)

(a) Univ-2 (b) Univ 3

Table 3: Results for Univ-2 and Univ-3. The day-time experiments were run on Oct 5th, and late evening experiments
on Oct 6th. For each experiment we indicate when it was started and how long it ran. Times are in US CDT.

time increase would have crossed the set threshold.
An interesting observation from these experiments is

that, irrespective of the MFC stage, the experiments seem
to consistently stop (or show a substantial degradation in
response time) for crowds of sizes 110-150. This holds
even for the large object stage, which is surprising be-
cause the server’s access bandwidth is very well provi-
sioned. Software configuration artifacts (e.g., limits on
the number of server threads) or buffer limitations might
explain these observations. As we discussed in Section 3,
an observed increase in response time may not always be
due to server resource constraints, but rather due to ar-
tifacts such as server-side request scheduling, resource
serialization, or buffer exhaustion.

The Univ-2 administrators agreed that software con-
figuration may be the reason (though they did not know
the exact reason). The server’s software configuration
had not changed in several years, and the operators re-
quested us to run additional MFC experiments against a
new configuration with a much larger bound on the num-
ber of threads. The administrators felt that the MFC ap-
proach could prove useful to tune both the hardware and
software configuration of their server.
Univ-3: We conducted similar experiments on the
Univ-3Web site on October 5, 2007. The Web site runs
on a 1.5GHz Sun V240 server. Compared to Univ-2,
the rate of background traffic at the Univ-3 server was
5X to 9X higher. The highest rate was observed during
the morning experiment (20 requests/s) and the lowest
rate observed during the late evening experiment (12.5
requests/s).

We see in Table 3(b) that the base HTTP processing
capabilities are adequate and comparable to Univ-2.
The Large Object stage shows no response time impact,
confirming that the bandwidth was well-provisioned.
The site’s ability to handle the small query request was
poor, however, as the response time showed a significant
increase with just 30 simultaneous requests.

For Univ-3, we also observe some effects due to
the variations in background traffic. For instance, in the
morning and afternoon Base stage experiments, the stop-
ping crowd size is lower, i.e., when there was more back-
ground traffic. The late evening experiment (22:55 hrs)
did not cause the response time to increase beyond the

threshold. Background traffic has little impact on the
Small Query and Large Object stages as the results are
similar for all three experiments. Small Query results are
affected solely by the constrained query handling capac-
ity, while the Large Object stage results are influenced
primarily by the abundant bandwidth. To gain a thorough
understanding of the limitations of a server’s resources, it
may be useful to run MFCs at under diverse background
traffic conditions.

Upon examining the results, the Univ-3 site oper-
ators echoed the sentiments of the operators of QTP,
Univ-1, and Univ-2 sites, namely that a diagnostic
tool like MFC that is capable of providing guidelines on
individual resource bottlenecks is useful. In their expe-
rience, site provisioning was often based on best guesses
followed by reactive changes. The operators also men-
tioned that MFC was non-intrusive as the impact on their
servers was minimal. Comparisons between Head and
Large Object results were of particular value to them;
they felt that they could have used the results to debug
a recent incident in which a large number of simulta-
neous downloads of a popular video frustrated another
user downloading a different large file. It was unclear if
the poor performance of the frustrated user was due to
a bandwidth bottleneck or request handling constraints.
Since Base showed a discernible response time increase
while Large Object did not, they felt the real problem was
more likely in request handling, rather than bandwidth
provisioning. The Small Query experiment helped them
to recall that their legacy infrastructure was not caching
responses appropriate thus causing the perceptible degra-
dation even with small crowd sizes.

Our experiments with cooperating production Web
sites proved to be quite useful to demonstrate the prac-
tical benefits of MFCs. Site operators agreed that the
technique did not impose a significant overhead. We also
found that inferences based on MFC experiments con-
firmed suspected issues, and in some cases revealed new
information or brought provisioning/configuration issues
to the attention of site operators. Having access to server
logs and other data also allowed us to examine issues
such as synchronization and the effects of background
traffic more directly.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association194

5 Large-Scale Measurements

The MFC approach is non-intrusive, automatic, and tun-
able to the specific content on a server. Thus, MFCs can
be run against servers “in the wild” to get insights into re-
source provisioning without disrupting the servers’ func-
tioning. In August and September 2007, we measured
several hundred Web servers, about 90 known phishing
servers, and a few hundred servers of startup companies.
We used the standard version of MFC with a threshold
of 100ms. Our experiments required a minimum of 50
client nodes; the maximum number of clients we used
depended on how may PlanetLab nodes were responsive
during a given experiment (maximum was 85). Each par-
ticipating client sent at most one request (i.e., we do not
use MFC-mr).

5.1 Generic Web servers

We first present results of running the MFC Base stage
against more than 400 Web servers. These were selected
from a list of Web site rankings maintained by Quant-
cast [19]. Servers with different levels of popularity are
well represented in our selection. We selected 114 sites
ranked 1-1K, 107 sites ranked 1K-10K, 118 sites ranked
10K-100K, and 148 sites ranked 100K-1Million. We ex-
pect that servers with a smaller rank (more popular Web
servers) would be qualitatively similar to one another
in terms of provisioning, and, more importantly, better-
provisioned than Web servers with much larger ranks.

Figure 7: Breakdown of stopping crowd sizes for the
Base stage for various Quantcast rank ranges.

Figure 7 shows a summary of the crowd size at which
different servers showed more than 100ms increase in the
median response time for the Base stage of the MFC.
For each rank category, we also break down the stopping
crowd sizes into sub-ranges as shown. As expected, the
total fraction of servers that show a 100ms increase in
response time increases steadily as we move to servers
with larger rank indexes (17% for the 1-1K category vs

45% for 100K-1M category). More than 15% of the
servers in the largest rank category (100K-1M) can han-
dle at most 20 simultaneous HEAD requests before the
response time increases visibly. Surprisingly, we also
find that ∼ 10% of the Web sites in the 1-1K rank cate-
gory degrade with less than 40 simultaneous requests.

Next, for the Small Query stage we selected around
400 Web servers, each hosting at least one object that
fits our definition of Small Query (see Section 2.2). All
clients requested the same object at the target server. We
measured 106, 103, 103, and 122 servers in the four
rank ranges in ascending order of the ranks. The mea-
surements summarized in Figure 8 show that the provi-
sioning of the servers is strongly correlated with pop-
ularity: the fraction of servers which show ≥ 100ms
degradation in response time increases significantly as
the server popularity decreases. Comparing Figures 8
and 7, we see that across all the rank-ranges a much
larger fraction of servers showed more than a 100ms
degradation in response time with the Small Query stage
compared with the Base stage. Among the servers with
largest ranks (100K-1M), about 75% of the servers can-
not handle more 50 simultaneous queries and about 45%
cannot handle more than 20 simultaneous queries (these
numbers were 38% and 18%, respectively, for the Base
stage). Somewhat surprisingly, even among the highest-
ranked servers, about 20% cannot handle any more than
40 simultaneous queries.

Figure 8: Breakdown of stopping crowd sizes for the
Small Query stage for various Quantcast rank ranges.

A possible reason for the difference between the Base
and Small Query is that the latter typically requires more
processing or more accesses to other back-end services
(e.g., databases) compared to the lightweight HEAD re-
quests of the Base stage. With a more resource-intensive
workload, we note a larger fraction of the Web sites
showing a degradation.

For the Large Object stage, we measured 129, 100,
114, and 103 servers in the four rank ranges, where
each server hosts at least one Large Object (size between

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 195

100KB and 2MB). The bandwidth provisioning of Web
servers appears less correlated with the server’s popular-
ity than the provisioning of the back-end database mod-
ules (see Figure 8) or the basic HTTP processing (see
Figure 7). Except for the most popular servers (1-1K),
about 45-55% of the servers in the rest of the categories
cannot handle more than 50 simultaneous requests. Also,
for the first two categories with the most popular servers
(1-1K and 1K-10K), the fractions are similar across the
Small Query and the Large Object stages. But, for
the remaining two categories, a much smaller fraction
of servers exhibit a degradation in response time dur-
ing the Large Object stage (57% and 55%) when com-
pared to Small Queries (65% and 77%). Most popular
servers provision both their access bandwidth and back-
end database and processing quite well. Lower rung
servers appear to provision their bandwidth relatively
better than their back-end data processing capability.

Figure 9: Breakdown of stopping crowd sizes for the
Large Object stage for various Quantcast rank ranges.

5.2 Startup Companies

We also measured Web servers of a few hundred startup
companies. Startup sites could benefit from a MFC ap-
proach, since they are often ill-prepared for a “success
disaster” resulting from coverage in popular news sites
or technology blogs. We compiled a list of recent star-
tups from technology blogs. We expected that most of
them would be deployed at commercial Web hosting ser-
vices, and thus, likely to be reasonably well-provisioned.

Stopping Crowdsize Percentage of servers
Base Small Query

10-20 24% 33%
20-30 6% 12%
30-40 7% 6%
40-50 6% 5%

No-Stop 58% 44%

Table 4: Stopping crowd sizes for startup servers

We ran the Base MFC stage on 107 startup servers;
results are shown in Table 4. About 68 servers (58%)

did not show a visible degradation in response time even
with 50 requests. At the other extreme, 24% of servers
showed a 100ms degradation with ≤20 requests. A lot
fewer servers showed degradation in response times for
the intermediate crowd sizes. The results for the Large
Object stage (we ran against 103 servers) were qualita-
tively similar to the Base stage, with 30% of the servers
showing a 100ms increase with a crowd size less than 30
(not shown). Compared to the Base and Large Object
stages, the Small Query experiment showed a marginally
greater degradation in the performance of the startup
sites (we measured 82 servers). Around 33% of the
tested servers were unable to handle more than 20 re-
quests in the Small Query experiment, and around 56%
of the sites stopped with a crowd size less than 50 (Ta-
ble 4). Overall, we find that a significant fraction of
startup servers (between 24% and 33%) cannot handle
more than a handful (≤ 20) of requests, and hence are
ill-prepared for even low-volume request floods.

5.3 Phishing Sites

We also conducted a measurement study of 89 phish-
ing sites obtained from Phish-tank [18] where we ran the
Base MFC stage.

Stopping Crowdsize Percentage of servers

10-20 12%
20-30 16%
30-40 11%
40-50 11%

No-Stop 50%

Table 5: Stopping crowd sizes for HEAD request for
phishing servers

Our intuition was that a very small fraction of phish-
ing sites would be hosted at well-provisioned Web host-
ing service providers. Thus, we expected phishers to be
similar, if not worse, compared to servers in the Quant-
cast 100K-1M rank range. From Table 5, we see that a
significant fraction (28%) cannot handle more than 30 re-
quests. For servers in the 100K-1M rank category (Fig-
ure 7), we find that the corresponding fraction of sites
was 18%, suggesting that most of the phishing sites are
hosted on fairly low-end servers similar to the 100K-1M
ranked Web sites. Table 5 also shows that about 50%
of the phishing sites did not show a 100ms increase in
response time even with a crowd of 50 clients—the cor-
responding fraction for servers in the 100K-1M category,
62%, is only slightly higher (Table 5). Indeed, the distri-
bution of the request handling capabilities of the phishing
sites is quite similar to low-end Web sites.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association196

6 Extensions

Role of “Measurers”: We can augment MFC with a set
of “measurers” that independently measure the response
time at the target and report these to the coordinator. The
measurers can either make concurrent requests for the
same object requested by the crowd or have the flexi-
bility to request other objects. The latter approach can
help quantify correlations among resources on the target
server (e.g., how does a disk-intensive workload impact
the response time of a database-intensive request?).
DDoS Vulnerabilities: Web sites can be the targets of
either network-level or application-level DDoS attacks.
The former class targets a server’s incoming (e.g., SYN-
floods) or outgoing bandwidth (e.g., e-protests) and the
latter targets server’s CPU, memory, disk or the back-end
database. The wide-spread use of botnets increases the
risk of carefully crafted application-level DDoS attacks.
Solution proposals for network-level attacks include ca-
pabilities [25, 17] and bandwidth amplification s [5, 11],
while resource payment mechanisms [21] have been pro-
posed for application-level attacks. A site operator must
first understand which resources are the most easily vul-
nerable to attacks. Second, the effectiveness of some pro-
tection mechanisms depends on the volume of the attack
traffic (e.g., [21, 17]). Thus, the operator needs to under-
stand at what volume of requests a server resource starts
to “keel over”. For instance, if a server’s response time
does not increase during the Large Object stage for very
large crowd sizes, but does so at a small crowd size for
the Small Query workload, then the server is highly vul-
nerable to even the most simple application-level attacks
on the back-end data processing subsystem. By compar-
ing inferences drawn from the different stages of a MFC
the operator can address these issues.
Staggered MFC: MFC enforces tight synchronization
of requests by scheduling them to arrive at the target si-
multaneously. However, if a Web server performs poorly
with respect to tight synchronization, but provides low
response times when the requests arrive somewhat stag-
gered, then we can conclude that the server can han-
dle the medium and low volume flash-crowds reasonably
well. Operators can benefit from understanding how the
application infrastructure behaves when the request inter-
arrival times follow a certain distribution. A simple ex-
tension to MFC can provide this capability – the coor-
dinator schedules the clients such that the target sees 1
request every m milliseconds. Other non-uniform distri-
butions of inter-arrival times are also easy to implement.

7 Related Work

Web server Benchmarking: Benchmarking tools [20,
24, 22, 13] can emulate multiple user sessions, create

client requests for dynamic content, and model standard
workloads for banking, e-commerce, and Web browsing.
These benchmarks provide controlled emulation of the
client side behavior in a lab setting (clients and server on
the same LAN). These tools stress test a server by chang-
ing parameters such as the number of active clients and
the inter-arrival times of requests. In contrast, MFC uses
clients that are distributed across the wide-area network,
providing the ability to understand server performance
under realistic networking conditions. Also, MFC pro-
vides the ability to exercise specific server resources in a
controlled fashion, yielding detailed observations.
Measuring and Modeling Flash Crowds: There are
several proposals for modeling flash crowd events [2, 23,
6]. One such technique [2] uses real flash crowd traces
to model request patterns and inter-arrival times to study
the effectiveness of various caching techniques during
flash crowd situations. Such approaches only capture
coarse-grained behavioral characteristics of flash-crowd
events, and as such do not address more fine-grained de-
tails of how the requests impact individual server compo-
nents. By devising specific request types MFC provides
the ability to capture these fine-grained aspects as well.

There are also techniques that study differences in
client request patterns to distinguish legitimate flash
crowds from malicious DDoS attacks [9]. Another tech-
nique [6] identifies flash crowds by examining perfor-
mance degradation in responses. Such techniques pri-
marily act as diagnostic aids when a server is experienc-
ing extreme load. In contrast, MFC operates in a signif-
icantly lower load regime while providing the ability to
identify the request volume at which a server’s response
time begins to show perceptible degradation.
Software Profiling: Several efforts attempt to pro-
file hosts to reveal interesting aspects of software plat-
forms or software artifacts that can indicate bottlenecks.
TBIT [16] fingerprints the TCP versions (e.g., Reno,
Newreno or SACK) used on servers. Controlled lab
experiments have been used to evaluate the robustness
of different TCP/IP implementations [7]. NMAP [14]
and p0f [15] are commonly used to remotely fingerprint
operating systems running on network-connected hosts.
MFC can complement these tools to provide a more com-
prehensive resource profile of Internet servers.

Researchers have suggested techniques for inferring
performance bottlenecks in distributed systems as events
or requests flow through the system [4, 1]. Although
these approaches treat the target system as a black box
on the whole, they require non-trivial instrumentation of
the target to shed light on why some requests are delayed
more than others. MFC is designed to provide useful
inferences even without any involvement from or instru-
mentation of the target server. By additionally instru-
menting the target, we can improve the accuracy of our

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 197

inferences.
Commercial Services: Keynote [10] provides wide-area
measurement services, with a focus on end-user experi-
ence. They use response times for single requests mea-
sured from a global network of computers to infer re-
source bottlenecks but they do not synchronize requests
in any way. In contrast, MFC can infer resource bottle-
necks that are not visible when the web server processes
a single request, but surface only under more intensive
synchronized loads.

8 Summary

We have presented the design, implementation, and
evaluation of mini-flash crowds (MFC)—a light-weight,
non-intrusive, wide-area profiling service for reveal-
ing resource bottlenecks in a Web server infrastructure.
Through controlled measurements with an increasing
number of clients making synchronized requests to exer-
cise specific resources of a remote server, we are able to
faithfully track the impact on different server resources.
We performed extensive validation experiments to ver-
ify that our approach can offer useful and accurate infor-
mation regarding resource provisioning. We conducted
several tests on co-operating Web sites, including one
large commercial site, which showed that our approach is
practical and safe. The operators of the cooperating sites
confirmed the inferences we made and found our obser-
vations regarding the provisioning of their server infras-
tructure quite useful. We ran MFC against hundreds of
servers of differing grades of popularity and with corre-
spondingly different server infrastructures. These mea-
surements indicate that back-end processing is a key bot-
tleneck for many servers of medium to low popularity
and that the access bandwidth is less constrained overall.
We are currently exploring numerous extensions to MFC
including tailored use for specific sites and using work-
loads with specific distributions of inter-arrival times.

References

[1] AGUILERA, M. K., MOGUL, J. C., WIENER, J. L.,
REYNOLDS, P., AND MUTHITACHAROEN, A. Performance de-
bugging for distributed systems of black boxes. In Proc. ACM
SOSP (2003).

[2] ARI, I., HONG, B., MILLER, E., BRANDT, S., AND LONG, D.
Managing of Flash Crowds on the Internet. In Proc. of MASCOTS
(2003).

[3] Anti-Web HTTPD Homepage.
http://www.hcsw.org/awhttpd/.

[4] BARHAM, P., DONNELLY, A., ISAACS, R., AND MORTIER, R.
Using Magpie for request extraction and workload modelling. In
Proc. of OSDI (2004), pp. 259–272.

[5] CASADO, M., AKELLA, A., CAO, P., PROVOS, N., AND

SHENKER, S. Cookies Along Trust Boundaries (CAT): Accurate

and Deployable Flood Protection. In Proc. of USENIX SRUTI
(San Jose, CA, July 2006).

[6] CHEN, X., AND HEIDEMANN, J. Flash Crowd Mitigation via
Adaptive Admission Control Based on Application Level Obser-
vations. Transactions on Information Technology 5, 3 (2005),
532–569.

[7] GAO, T., AND MAHDAVI, J. On Current TCP/IP implementa-
tions and Performance. Unpublished manuscript, Aug. 2000.

[8] HEINLEIN, P. Fastcgi: A high-performance gateway interface.
In Proc. of WWW (May 1996).

[9] JUNG, J., KRISHNAMURTHY, B., AND RABINOVICH, M. Flash
crowds and denial of service attacks: Characterization, and im-
plications for CDNs and web sites. In Proc. of WWW (2002).

[10] KEYNOTE SYSTEMS, INC. http://www.keynote.com,
June 2003.

[11] MAHIMKAR, A., DANGE, J., SHMATIKOV, V., VIN, H., AND

ZHANG, Y. dFence: Transparent Network-based Denial of Ser-
vice Mitigation. In Proc. of NSDI (2007).

[12] Mongrel: V2. http://mongrel.rubyforge.org.

[13] MOSBERGER, D., AND JIN, T. httperf: A Tool for Measuring
Web Server Performance. SIGMETRICS Perform. Eval. Rev. 26,
3 (1998), 31–37.

[14] Nmap: Free security scanner for network exploration.
http://insecure.org/nmap/.

[15] p0f: A passive finger printing tool.
http://lcamtuf.coredump.cx/p0f.shtml.

[16] PADHYE, J., AND FLOYD, S. Identifying the TCP Behavior of
Web Servers. In ACM SIGCOMM (Aug. 2001).

[17] PARNO, B., WENDLANDT, D., SHI, E., PERRIG, A., MAGGS,
B., AND HU, Y.-C. Portcullis: Protecting Connection Setup
from Denial-of-Capability Attacks. SIGCOMM Comput. Com-
mun. Rev. 37, 4 (2007), 289–300.

[18] Phishtank. http://phishtank.org.

[19] Quantcast: Open Internet Ratings Service.
http://www.quantcast.com/.

[20] SPECweb2005 Benchmark. http://www.spec.org/web2005,
1999.

[21] WALFISH, M., VUTUKURU, M., BALAKRISHNAN, H.,
KARGER, D., AND SHENKER, S. DDoS Defense by Offense.
In Proc. of ACM SIGCOMM (September 2006).

[22] Mindcraft Benchmarks: WebStone.
http://www.mindcraft.com/webstone/.

[23] WEI, S., AND MIRKOVIC, J. A Realistic Simulation of Internet
Scale Events. In Proc. of VALUETOOLS (2006).

[24] SPECweb99 Benchmark. http://www.spec.org/osg/web99, 1999.

[25] YANG, X., WETHERALL, D., AND ANDERSON, T. A DoS-
limiting Network Architecture. In Proc. of SIGCOMM (2005).

[26] ZHANG, Y., DUFFIELD, N., PAXSON, V., AND SHENKER, S.
On the Constancy of Internet Path Properties. In Proc. of IMW
(Nov. 2001).

Notes
1FastCGI forks a new process for each request. As the number of

requests increases, each of the forked process independently inherits
the memory image of the parent process leading to very high memory
usage during the experiment.

2As indicated in Figure 2, the experiment runs until the crowd size
reaches 15. We analyzed the results to identify the earliest crowd size
at which a 100ms increase occurs.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association198

