King of the Hill

A Novel Cybersecurity Competition for Teaching Penetration Testing

Kevin Bock, George Hughey, Dave Levin

Teaching Penetration Testing

Businesses are increasingly ramping up internal security

Penetration testing has exploded as a field

Teaching pentesting has become increasingly in-demand

Teaching Cybersecurity

- Cybersecurity competitions are a effective and engaging way to students to learn and practice cybersecurity
- Many different types of competitions geared to teaching different aspects of security

Penetration Testing

Pivoting

from one machine to another

Implants

developed in advance for an engagement

Preparation

with advanced recon, scanning, and development

Goals

- 1. Require competitors to **pivot**
- 2. Allow for the development of **implants**
- 3. Allow for advance **reconnaissance** before the competition
- 4. Encourage defensive operations and trade-offs
- 5. Instill **best practices** for both offense and defense, and keep **ethics** in mind

King of the Hill (KotH)

KotH at a High Level

Pivoting

Large, nontrivial **network topology** with pivot points

Implants

Student **teams** write offensive and defensive implants

Preparation

Two-week project: find vulnerabilities & write implants

Trade-offs

In-class competition, decide what **critical services** to defend, patch, or turn off

Gameplay

- Students divided into teams
- Each team must work together to attack, control, and defend machines over a large network topology

Maintaining Critical Services

- As students claim machines, they inherit the *responsibility* for them
 - Must protect their access and critical services from other teams
- We've introduced vulnerabilities
 - Competitors face a trade-off: patch or turn off?
- Scoring: Every two minutes we check for service availability
 - +1 point for each machine they control that is up/responsive to pings
 - +1 point for each functioning critical service

Territories

- Each team starts with an entry node
- Entry machines are out of scope
- Territories grow/shrink as teams take/lose control of boxes

Pivots

- Necessary to access other subnets
- High-value targets
- We expect these to change hands many times throughout a competition

Critical services

- FTP, SSH, HTTP, etc.
- Must be maintained and protected
- Pre-seeded vulnerabilities
- We expect these to become more secure throughout a competition

Implants

- Teams develop implants in advance
- We deploy them on target machines
- No teams know what or where other teams' implants are

Scorebot

- Globally reachable
- Periodically verifies critical services are responsive

Scorebot dashboard

- Accessible by all teams
- Updates live as teams claim machines
- Shows where attacks are taking place
- Shows the overall accessibility of each service

Student Preparation

- Each team is given a full, isolated clone of the competition environment 2 weeks in advance of live competition to privately penetration test the network
- Each team could enter the competition with overlapping but different ways to access, escalate privileges, and defend different target machines

In our class, each student **identified 2 vulnerabilities** on an image of their choice and wrote an implant as a project.

Continual Scanning

- During the competition, a few highly vulnerable, unscored, hidden machines are secretly added to the network that do not appear in the initial network copies
- Easy to breach compared to the rest of the network
- Pose a threat to teams if other teams can attack them through previously unseen vectors
- Mimics threats faced often by real Network Operation Centers of new vulnerable or compromised machines being connected by unknowing employees, insider threats, or malicious actors

KotH at a High Level

Pivoting

Large, nontrivial **network topology** with pivot points

Implants

Student **teams** write offensive and defensive implants

Preparation

Two-week project: find vulnerabilities & write implants

Trade-offs

In-class competition, decide what **critical services** to defend, patch, or turn off

Implementation

- Competition backend was designed and run in Cypherpath
 - Virtual Software Defined Infrastructure (SDI) management program

 The network layout, machine information, and scorebot implementation are publicly available

https://koth.cs.umd.edu

Sample Run

Sample Run

- Ran King of the Hill for our course on Introduction to Penetration Testing
 - Exercise ran for 3 hours
- Configuration:
 - 4 teams of 4-5 people, labeled by color
 - Each team got an initial Kali machine reachable only by them
 - Six unique vulnerable images (4 Linux, 2 Windows)
 - Duplicated them across the networks
 - Every team's view was symmetrical

Results

- Students were quick to close vulnerabilities after gaining access
- Worked to configure strong firewall policies to block traffic on unwanted ports
- Carefully monitored running services and processes to find malicious or vulnerable code
- By the end of the competition, most machines were significantly more secure than at the beginning

Cost-Benefit

- Students identified some vulnerabilities that were more time-consuming to patch and chose to leave them unpatched
- Weighted cost of lost points during patching against the risk of another team exploiting them
- Multiple teams specifically reported this for EternalBlue

Vulnerability Discovery

- Across all teams, students identified most access vulnerabilities
- Local privilege escalation (LPE) vulnerabilities were most often missed by students during initial penetration test
- Only unprivileged access is required to trigger a phone-home to the scorebot to claim a machine
 - Privileged access is primarily useful for bolstering access and acting defensively

Vulnerability Discovery

- Before the competition, students valued unprivileged access more than a full-chain of exploits (access + LPE)
- This dynamic changed during the competition
- Many machines had multiple teams simultaneously accessing them with unprivileged access
 - became a "race to root" of which team could escalate their privileges to kick out the other teams first and defend the machine

Implants

- Students put a great deal of effort in implant development
- Many very strong implants were developed
 - Recompiled Bash with backdoors introduced
 - Infected/hooked PAM module
 - Self-hiding and self-protecting userland rootkits
 - Small kernel module
 - Self-protecting backdoor processes

Student Feedback

- Student feedback was overall very positive
- Students became very invested in the competition, and worked hard on implants and vulnerability discovery
- Students liked the dual attack-defense nature coupled with the ability to strategize

Customize KotH for Your Class

Pivoting

Specific vulnerabilities can vary based on class goals Network topology can establish attack "prerequisites"

Implants

Class projects could require certain attacks/defenses

Preparation

Varying amount of details can be provided

Trade-offs

Patch vs. turn off; easy vs. hard targets; attack vs. defend

Summary

- King of the Hill is a novel cybersecurity competition that provides hands-on experience with real-world penetration testing practices
- Combines
 - network pivoting
 - custom implant development
 - advanced preparation
- Initial in-class run of KotH indicates that it creates an exciting environment in which students gain valuable pentesting practice

https://koth.cs.umd.edu

King of the Hill