
Teaching with angr: A
Symbolic Execution
Curriculum and CTF

Jacob M. Springer1,2, Wu-chang Feng1

1Portland State University
2Swarthmore College

Outline

● What is symbolic execution?
● How do we teach it?

Symbolic execution: why should you care?

Symbolic execution: why should you care?
● Program analysis and testing

Symbolic execution: why should you care?
● Program analysis and testing
● Microsoft applications (PowerPoint, Word, etc.)

Symbolic execution: why should you care?
● Program analysis and testing
● Microsoft applications (PowerPoint, Word, etc.)
● DARPA's Cyber-Grand Challenge

Symbolic execution: why should you care?
● Program analysis and testing
● Microsoft applications (PowerPoint, Word, etc.)
● DARPA's Cyber-Grand Challenge
● Important for students to understand and apply

What is symbolic execution?

Find input to print “Good Job.”

#define SECRET 100
int check_code(int input) {
 if (input >= SECRET+88) return 0;
 if (input > SECRET+100) return 0;
 if (input == SECRET+68) return 0;
 if (input < SECRET) return 0;
 if (input <= SECRET+78) return 0;
 if (input & 0x1) return 0;
 if (input & 0x2) return 0;
 if (input & 0x4) return 0;
 return 1;
}

Execution paths can be
represented as a tree.

if (input > SECRET+100)

if (input == SECRET+68)

if (input < SECRET)

if (input <= SECRET+78)

if (input & 0x1)

if (input & 0x2)

if (input & 0x4)

return 0;

return 0;

return 0;

return 0;

return 0;

return 0;

return 0;

return 0; return 1;

if (input >= SECRET+88)

Animation: Building a Set of Paths

if (input >= SECRET+88)

Legend:
Blue = already
executed
Yellow = active
Red = terminated

Animation: Building a Set of Paths

if (input >= SECRET+88)

if (input > SECRET+100)return 0;

Legend:
Blue = already
executed
Yellow = active
Red = terminated

Animation: Building a Set of Paths

if (input >= SECRET+88)

if (input > SECRET+100)

if (input == SECRET+68)

return 0;

return 0;

Legend:
Blue = already
executed
Yellow = active
Red = terminated

Animation: Building a Set of Paths

if (input >= SECRET+88)

if (input > SECRET+100)

if (input == SECRET+68)

if (input < SECRET)

if (input <= SECRET+78)

if (input & 0x1)

if (input & 0x2)

if (input & 0x4)

return 0;

return 0;

return 0;

return 0;

return 0;

return 0;

return 0;

return 0;

Legend:
Blue = already
executed
Yellow = active
Red = terminated

return 1;

We found what
we wanted!

Applying symbolic execution

if (input >= SECRET+88)

if (input > SECRET+100)

if (input == SECRET+68)

if (input < SECRET)

if (input <= SECRET+78)

if (input & 0x1)

if (input & 0x2)

if (input & 0x4)

return 1;

Once we have a path, we can build
an equation that can be solved by
the computer:

 input >= SECRET+88
∧ input > SECRET+100
∧ input == SECRET+68
∧ input < SECRET
∧ input <= SECRET+78
∧ input & 0x1
∧ input & 0x2
∧ input & 0x4

Angr-y CTF

Goal: Build a curriculum and a set of capture-the-flag
(CTF) levels to introduce students to symbolic execution

Our Approach

Our Approach
Modeled after MetaCTF (USENIX 3GSE 2015)

● Find a password that causes a program to print "Good Job."

Our Approach
Modeled after MetaCTF (USENIX 3GSE 2015)

● Find a password that causes a program to print "Good Job."

18 scaffolded levels

● Requires symbolic execution to solve

Our Approach
Modeled after MetaCTF (USENIX 3GSE 2015)

● Find a password that causes a program to print "Good Job."

18 scaffolded levels

● Requires symbolic execution to solve

Uses angr (angr.io)

A typical level

A typical level
● Student receives a binary and a template angr script

A typical level
● Student receives a binary and a template angr script
● Student edits the template to analyze the binary

A typical level
● Student receives a binary and a template angr script
● Student edits the template to analyze the binary
● Student runs the script which prints a password

A typical level
● Student receives a binary and a template angr script
● Student edits the template to analyze the binary
● Student runs the script which prints a password
● Student runs the binary and types in the password to confirm their work

The levels are scaffolded

What does scaffolding mean?
● Support structure, just like a

scaffold
● Guided, incremental introduction

of concepts

CTF Modules
● Basic symbolic execution
● Symbol injection
● Handling complexity
● Automated exploitation

Scaffolding for pedagogy: not frustrating
● Level 1
● Well documented
● Only need to change two lines

Scaffolding for pedagogy: guided
● Tells student

how to get
started

Scaffolding: simple

MetaCTF Example

Scaffolding: builds on previous concepts

Scaffolding: incremental and reinforcing
● Level 02 (find_condition)

● Level 03 (symbolic_registers)

Scaffolding: incremental and reinforcing
● Level 02 (find_condition)

○ 1. Load binary
○ 2. Define the termination condition (Has the program printed “Good

Job.”?)
○ 3. Search binary for condition

● Level 03 (symbolic_registers)

Scaffolding: incremental and reinforcing
● Level 02 (find_condition)

○ 1. Load binary
○ 2. Define the termination condition (Has the program printed “Good

Job.”?)
○ 3. Search binary for condition

● Level 03 (symbolic_registers)
○ 1. Load binary
○ 2. Inject symbols
○ 3. Define the termination condition (Has the program printed “Good

Job.”?)
○ 4. Search binary for condition

Scaffolding: conceptual
● First glance:

seems complicated

Scaffolding: conceptual, part 2

What does metamorphic mean?
● Different SECRET for

every student
● Can generate arbitrary

C code

Metamorphic levels
● Reduce cheating
● Allow reuse
● Maintain consistency of difficulty across students

Evaluation
● Offered Winter 2018 in Portland State University's CS 492/592: Malware

course
○ Last 2 weeks focused on symbolic execution

● Survey given at the end of two weeks
○ 33 of 42 responded

Results
Curriculum and scaffolding allow students to complete most levels

Completion percentage Number of students

95-100% 25

85-95% 4

75-85% 6

Below 75% 7

Survey
● Ratings evaluate helpfulness of curriculum and CTF

○ Very Unhelpful = 1
○ Very Helpful = 5

● Q1: Rate the lecture material for understanding the concepts

● Q2: Rate the CTF exercises for understanding the concepts

Rating 1 2 3 4 5 Mean

Q1 1 1 2 17 12 4.15

Rating 1 2 3 4 5 Mean

Q2 2 1 3 18 9 3.94

Survey
● Q3: Rate the CTF exercises for developing skills in using symbolic execution

techniques

Rating 1 2 3 4 5 Mean

Q3 1 3 3 16 10 3.94

Try the CTF!

https://malware.oregonctf.org

Also on GitHub http://github.com/jakespringer/angr_ctf

https://malware.oregonctf.org/
http://github.com/jakespringer/angr_ctf

