Teaching with angr: A
Symbolic Execution

Curriculum and CTF
Jacob M. Springer'?, Wu-chang Feng’

'Portland State University
2Swarthmore College

Outline

e \What is symbolic execution?
e How do we teach it?

Symbolic execution: why should you care?

Symbolic execution: why should you care?

Program analysis and testing

Symbolic execution: why should you care?

Program analysis and testing
Microsoft applications (PowerPoint, Word, etc.)

Symbolic execution: why should you care?

Program analysis and testing
Microsoft applications (PowerPoint, Word, etc.)
DARPA's Cyber-Grand Challenge

Symbolic execution: why should you care?

Program analysis and testing

Microsoft applications (PowerPoint, Word, etc.)
DARPA's Cyber-Grand Challenge

Important for students to understand and apply

What is symbolic execution?

int check code(int input) {
if (input >= SECRET+88) return 0;
if (input > SECRET+100) return 0;
if (input == SECRET+68) return 0;
if (input < SECRET) return 0;
if (input <= SECRET+78) return 0;
if (input & Ox1) return 0;
if (input & Ox2) return 0;
if (input & O0x4) return 0;
return 1;

}

int main() {
int input;
scanf("%d", &input);
if (check code(input))
printf("Good Job.\n");
else
printf("Try again.\n");

Find input to print “Good Job.”

|if (input >= SECRET+884

- Execution paths can be
represented as a tree.

|if (input > SECRET +100)

|return 0;

|if (input == SECRET+684

| return 0;

| return 0; | if (input < SECRET) |

| return 0; |if (input <= SECRET+78)

4define SECRET 100 | return 0; | if (input & 0Ox1)

int check code(int input) {
if (input >= SECRET+88) return O0; f | {
if (input > SECRET+100) return 0; | return 0; | if (input & 0x2) |
if (input == SECRET+68) return O0;
if (input < SECRET) return O0;

| return 0;

| if (input & 0x4)

if (input & 0x1) return O; . ////5////)\\\\f\\\\‘
if (input & 0x2) return O0O; |return 1; |

| return 0;

(
(
(
(
if (input <= SECRET+78) return O0;
(
(
(

if (input & 0x4) return O0;
return 1;

Animation: Building a Set of Paths

if (input

>= SECRET +88)

Legend:

Blue = already
executed

Yellow = active
Red = terminated

Animation: Building a Set of Paths

if (input >= SECRET +88)

—

return 0; if (input

> SECRET+100)

Legend:

Blue = already
executed

Yellow = active
Red = terminated

Animation: Building a Set of Paths

if (input

>= SECRET +88)

input > SECRET+100)

- rn 0; if (input ==

SECRET +68)

Legend:

Blue = already
executed

Yellow = active
Red = terminated

Animation: Building a Set of Paths

if (input >= SECRET +88)
1

i
return 0; if (input > SECRET+100)
|

return 0; if (input == SECRET+68)

return 0;

return 0;

Legend:

Blue = already
executed

Yellow = active
Red = terminated

if (input < SECRET)

We found what
we wanted!

if (input <= SECRET+78)

return 0; if (input & 0Ox1)

return 0; if (input & 0x2)

return 0; if (input & 0x4)

return 0; return 1;

Applying symbolic execution

Once we have a path, we can build

| if (input >— SECRET88)

; an equation that can be solved by
|if (input > fECRET+lOO) | the Computer:
| if (input ::lSECRET+68) |

| if (input < SECRET)

input >= SECRET+88

|if (input <= SECRET+78) | input > SECRET+100
| input == SECRET+68
| if (iﬂputl& 0x1) | input < SECRET

input <= SECRET+78
input & 0x1
input & 0x2
input & 0x4

| if (input & 0x2) |

!

| if (input & Ox4) |

:
[4}eturn 1; |

>>>>>>>

Angr-y CTF

Goal: Build a curriculum and a set of capture-the-flag
(CTF) levels to introduce students to symbolic execution

Our Approach

Our Approach

Modeled after MetaCTF (USENIX 3GSE 2015)

e Find a password that causes a program to print "Good Job."

Our Approach

Modeled after MetaCTF (USENIX 3GSE 2015)
e Find a password that causes a program to print "Good Job."
18 scaffolded levels

e Requires symbolic execution to solve

Our Approach

Modeled after MetaCTF (USENIX 3GSE 2015)

e Find a password that causes a program to print "Good Job."
18 scaffolded levels

e Requires symbolic execution to solve

Uses angr (angr.io)

A typical level

A typical level

e Student receives a binary and a template angr script

A typical level

e Student receives a binary and a template angr script
e Student edits the template to analyze the binary

A typical level

e Student receives a binary and a template angr script
e Student edits the template to analyze the binary
e Student runs the script which prints a password

A typical level

e Student receives a binary and a template angr script
e Student edits the template to analyze the binary
e Student runs the script which prints a password
e Student runs the binary and types in the password to confirm their work

The levels are scaffolded

What does scaffolding mean?

Support structure, just like a
scaffold

Guided, incremental introduction
of concepts

m 00_angr_find

m 01_angr_avoid

im 02_angr_find_condition
m 03_angr_symbolic_regi...
im 04_angr_symbolic_stack
m 05_angr_symbolic_me...
m 06_angr_symbolic_dyn...
m 07_angr_symbolic_file

m 08_angr_constraints

m 09_angr_hooks

i 10_angr_simprocedures
m 11_angr_sim_scanf

im 12_angr_veritesting

im 13_angr_static_binary

im 14_angr_shared_library
m 15_angr_arbitrary_read
m 16_angr_arbitrary_write

mm 17_angr_arbitrary_jump

CTF Modules

Basic symbolic execution
Symbol injection
Handling complexity
Automated exploitation

Scaffolding for pedagogy: not frustrating

Level 1
Well documented
Only need to change two lines

import angr
import sys

def main(argv):

Create an Angr project.

If you want to be able to point to the binary from the command line, you can
use argv[1l] as the parameter. Then, you can run the script from the command
line as follows:

python ./scaffoldee.py [binary]

[€D]

path_to_binary = # :string

project = angr.Project(path_to_binary)

HHERHE IR

Tell Angr where to start executing (should it start from the main()
function or somewhere else?) For now, use the entry_state function
to instruct Angr to start from the main() function.

initial_state = project.factory.entry_state()

Create a simulation manager initialized with the starting state. It provides
a number of useful tools to search and execute the binary.
simulation = project.factory.simgr(initial_state)

Explore the binary to attempt to find the address that prints "Good Job."
You will have to find the address you want to find and insert it here.

This function will keep executing until it either finds a solution or it
has explored every possible path through the executable.

(1)

print_good_address = (] # :integer (probably in hexadecimal)
simulation.explore(find=print_good_address)

Check that we have found a solution. The simulation.explore() method will

set simulation.found to a list of the states that it could find that reach

the instruction we asked it to search for. Remember, in Python, if a list

is empty, it will be evaluated as false, otherwise true.

if simulation.found:
The explore method stops after it finds a single state that arrives at the
target address.
solution_state = simulation.found[@]

Print the string that Angr wrote to stdin to follow solution_state. This
is our solution.
print solution_state.posix.dumps(sys.stdin.fileno())

else:
If Angr could not find a path that reaches print_good_address, throw an
error. Perhaps you mistyped the print_good_address?
raise Exception('Could not find the solution')

if __name__ == '__main__':

main(sys.argv)

Scaffolding for pedagogy: guided

e Tells student
how to get
started

We want to identify a place in the binary, when strncpy is called, when we can:
1) Control the source contents (not the source pointer!)

i * This will allow us to write arbitrary data to the destination.

2) Control the destination pointer

* This will allow us to write to an arbitrary location.

Scaffolding: simple

Explore the binary to attempt to find the address that prints "Good Job."
You will have to find the address you want to find and insert it here.

This function will keep executing until it either finds a solution or it
has explored every possible path through the executable.

(1)

print_good_address = [# :integer (probably in hexadecimal)
simulation.explore(find=print_good_address)

MetaCTF Example

int check code(int input) {
if (input >= SECRET+88) return 0;
if (input > SECRET+100) return 0;
if (input == SECRET+68) return 0;
if (input < SECRET) return 0;
if (input <= SECRET+78) return 0;
if (input & Ox1) return 0;
if (input & Ox2) return 0;
if (input & Ox4) return 0;

0x804867a ; [gi]
sub esp, O0Oxc
; 0x8048760
7 "Good Job."
push str.Good_Job.

~J =) W 4 W [¥] —

return 1; call sym.imp.puts; [gk]
} add esp, 0x10
int main() {

int input;

scanf("%d", &input);
if (check code(input))
printf("Good Job.\n");
else
printf("Try again.\n");

Scaffolding: builds on previous concepts

47
48
49
50
51
52
53

| 0x804867a ; [gi]

2 sub esp, 0xc
3 ; 0x8048760
4 ; "Good Job."

wn

push str.Good_Job.
6 call sym.imp.puts; [gk]
7 add esp, 0x10

Explore the binary tojjattempt to find the address that prints "Good Job."
You will have to findjthe address you want to find and insert it here.

This function will kegp executing until it either finds a solution or it
has explored every pg*?ible path through the executable.

(1)
print_good_address = @x804867a # :integer (probably in hexadecimal)
simulation.explore(find=print_good_address)

Scaffolding: incremental and reinforcing

e Level 02 (find_condition)

e Level 03 (symbolic_registers)

Scaffolding: incremental and reinforcing

e Level 02 (find_condition)
o 1. Load binary
o 2. Define the termination condition (Has the program printed “Good
Job."?)
o 3. Search binary for condition
e Level 03 (symbolic_registers)

Scaffolding: incremental and reinforcing

e Level 02 (find_condition)
o 1. Load binary
o 2. Define the termination condition (Has the program printed “Good
Job."?)
o 3. Search binary for condition
e Level 03 (symbolic_registers)
o 1. Load binary
o 2. Inject symbols
o 3. Define the termination condition (Has the program printed “Good
Job.”?)
4. Search binary for condition

O

Scaffolding: conceptual

while (has_active() or has_unconstrained()) and (not has_found_solution()):
Check every unconstrained state that the simulation has found so far.

1 . # (1)
. Flrst glance for unconstrained_state in simulation.unconstrained:

Get the eip register (review ©3_angr_symbolic_registers).
(1)

Seems Compllcated eip = unconstrained_state.regs.[EH

Check if we can set the state to our print_good function.

(1)
if unconstrained_state.satisfiable(extra_constraints=(eip == [H)):
We can!

solution_state = unconstrained_state

Now, constrain eip to equal the address of the print_good function.

(1)
break

Since we already checked all of the unconstrained states and did not find
simulation.drop(stash="unconstrained’)

Advance the simulation.
simulation.step()

if solution_state:
Ensure that every printed byte is within the acceptable ASCII range (A..Z)
for byte in solution_state.posix.files[sys.stdin.fileno()].all_bytes().chop(bits=8):
solution_state.add_constraints(byte >= EEf, byte <= EEH)

Solve for the user input (recall that this is
'solution_state.posix.dumps(sys.stdin.fileno())')
(1)
solution = [l
print solution
else:
raise Exception('Could not find the solution')

if __name__ == '__main__':

main(sys.argv)

Scaffolding: conceptual, part 2

Get the eip register (review @€3_angr_symbolic_registers).

(1)

eip = unconstrained_state.regs.[§H

Check if we can set the state to our print_good function.

(1)

if unconstrained_state.satisfiable(extra_ constraints=(eip == [FH)):
We can!

solution_state = unconstrained_state

Now, constrain eip to equal the address of the print_good function.

(1)

break

What does metamorphic mean?

int check code(int input) {

e Different SECRET for if (input >= SECRET+88) return 0;
if (input > SECRET+100) return 0;
every student if (input == SECRET+68) return 0;
e Can generate arbitraw if (input < SECRET) return 0;
if (input <= SECRET+78) return 0;
C code if (input & 0x1) return 0;

if (input & Ox2) return O;
if (input & O0x4) return 0;
return 1;

}

int main() {
int input;
scanf("%sd", &input);
if (check code(input))
printf("Good Job.\n");
else
printf(“"Try again.\n");

Metamorphic levels

e Reduce cheating
e Allow reuse
e Maintain consistency of difficulty across students

Evaluation

e Offered Winter 2018 in Portland State University's CS 492/592: Malware
course
o Last 2 weeks focused on symbolic execution

e Survey given at the end of two weeks
o 33 of 42 responded

Results

Curriculum and scaffolding allow students to complete most levels

Completion percentage Number of students
95-100% 25

85-95% 4

75-85% 6

Below 75% 7

Survey

e Ratings evaluate helpfulness of curriculum and CTF
o Very Unhelpful = 1
o Very Helpful =5
e Q1: Rate the lecture material for understanding the concepts

Rating 1 2 3 4 5 Mean

Q1 1 1 2 17 12 415

e Q2: Rate the CTF exercises for understanding the concepts

Rating 1 2 3 4 5 Mean

Q2 2 1 3 18 9 3.94

Survey

e Q3: Rate the CTF exercises for developing skills in using symbolic execution
techniques

Rating 1 2 3 4 5 Mean

Q3 1 3 3 16 10 3.94

Try the CTF!

https://malware.oregonctf.org

Also on GitHub http://github.com/jakespringer/angr_ctf

https://malware.oregonctf.org/
http://github.com/jakespringer/angr_ctf

