

Lowering the Barriers to Industrial Control System Security with GRFICS

David Formby, Milad Rad, and Raheem Beyah

Introduction

- Large cybersecurity skills gap even with good tools
 - Metasploitable, Kali Linux, previous ASE work
- ICS security gap even larger
 - Expensive equipment and software
 - Expensive and dangerous to practice physical attacks
 - No ICS equivalent to Metasploitable
- ICS personnel misinformed about security
 - "Air gap", not a target, not possible

Related Work

- Hardware testbeds
 - Singapore University of Technology
 - Water treatment facility, water distribution network, and small scale electric power grid network.
 - Department of Energy SCADA testbed
 - Not scalable
- Virtual
 - OpenPLC
 - Not convincing

ICS Background

- Insecure by design
 - No/weak passwords, password policies
 - No message authentication
 - Life cycle > 10 years
 - Difficult to patch
- Network defenses critical
- Physical "exploit"

Figure 1: High level structure of ICS network

Programmable Logic Controller (PLC) Background

- Essentially industrialized microcontroller
 - Ruggedized, real-time constraints
 - Control physical equipment
- Programming languages
 - Ladder logic graphical, like hardware relays
 - Structured text C like language
 - Instruction list assembly like language
 - Function block diagram
 - Sequential function charts

GRFICS Overview

Figure 3: Architecture of GRFICS framework

GRFICS Overview

Figure 2: Network Diagram for Virtualized Network

Physical Process Simulation

- Tennessee Eastman Challenge Process
 - Exothermic chemical reactor simulation
 - Originally for process control engineers, in Fortran
 - Two input feeds, product output and purge valve
 - More efficient at higher pressure
- Key measurements
 - Reactor pressure and level
 - Cost i.e. how much is wasted through purge
- C++, JSON API over port 55555

Simplified Tennessee Eastman Chemical Process

Figure 4: Piping & Instrumentation Diagram (P&ID) for the simplified Tennessee Eastman Challenge Process

Remote IO Layer

- Modbus servers on 6 IP address aliases
 - Report measurements to PLC
 - Take commands from PLC to control valves
- JSON API
 - Get current values from simulation and update valves

```
{
    "request":"write",
    "data": {
        "inputs": {
            "f1_valve_sp":1,
            "f2_valve_sp":2,
            "purge_valve_sp":3,
            "product_valve_sp":4,
        }
    }
}
```

```
"process": "simpleTE",
"outputs ": {
    "f1_flow ":1.
    "f2_flow":2.
    "purge_flow":3.
    "product_flow":4,
    "pressure":5,
    "liquid_level":6.
    "A_in_purge":7,
    "B_in_purge": 8,
    "C_in_purge":9,
    "cost":10
"state": {
    "f1_valve_pos":1,
   "f2_valve_pos":2,
    "purge_valve_pos":3,
    "product_valve_pos":4
```


Process Simulation

Unity 3D Game Engine

- Built-in physics engine for collisions
- Popular with active and supportive community

GRFICS

- Purchased 3D models of reactor, pipe, valves, warehouse
- Get values using JSON API
- Overlay current values and summarize in sidepane

Figure 7: "Normal" Operation

Visualization of Successful Attacks

OpenPLC and libmodbus

- OpenPLC Open source software PLC
 - Primarily speaks Modbus
 - Old, common, super simple
 - Move raw data using registers
- Buffer overflow for libmodbus <= v3.0.2
 - Mismatch in max number of bytes and number of registers requested
 - Binary data, no need to encode payload
- Standard Debian package

Engineering Workstation/HMI

Figure 9: PLCOpen Editor

Figure 10: OpenPLC Web Interface

Figure 11: Operator Human Machine Interface (HMI)

Example Attacks

- MITM
- Command injection
- False data injection
- Reprogramming PLC
 - Stuxnet
- Loading malicious binary payload
 - TRITON
- Common IT attacks
 - Password cracking
 - Buffer overflow

Example Defenses

- Network segmentation
 - ISA 95 Reference model
- IDS/IPS
 - Snort rules to detect and/or stop buffer overflow

Figure 13: Segmented network architecture according to Purdue Reference Model

Georgia

Discussion

- Installation
 - Tedious if from scratch, also have pre-built VMs for download
 - Good hardware required 30GB HDD, 8GB RAM, Quad core
- Fidelity
 - Simplified simulation, open source quality not industrial quality
 - Good enough physics for CS background
- Performance
 - Unity visualization can get slow under attacks

Conclusions and Future Work

- ICS security skills gap is larger due to higher barriers to entry
- GRFICS
 - Free and open source
 - Improved realism and engagement over previous work
- Future work
 - Incorporate into graduate level "Cyber physical system security" class
 - Improve fidelity
 - "Real" ICS software, larger network
 - Add more scenarios

Questions?

Thank you!

David Formby

djformby@gatech.edu

dformby@fortiphyd.com

@fortiphyd

