
InfiniCache: Exploiting Ephemeral
Serverless Functions to Build a
Cost-Effective Memory Cache

Ao Wang*, Jingyuan Zhang*, Xiaolong Ma, Ali Anwar, Lukas Rupprecht,
Dimitrios Skourtis, Vasily Tarasov, Feng Yan, Yue Cheng

* These authors contributed equally to this work

Web applications are storage-intensive

2

Google Cloud Storage

Web applications — heterogeneous I/O

3

Client

Microservices

Case study: IBM Docker registry workloads

• IBM Cloud container registry service across 75 days during 2017

• Selected data centers: Dallas & London

4

Case study: IBM Docker registry workloads

• Object size distribution

• Large object reuse patterns

• Storage footprint

5

Case study: IBM Docker registry workloads

• Object size distribution

• Large object reuse patterns

• Storage footprint

6

Extreme variability in object sizes:

Ø Object sizes span over 9 orders of magnitude

Ø 20% of objects > 10MB

Case study: IBM Docker registry workloads

• Object size distribution

• Large object reuse patterns

• Storage footprint

7

Caching large objects is beneficial:

Ø > 30% large object (>10MB) access 10+ times

Ø Around 45% of them got reused within 1 hour

Case study: IBM Docker registry workloads

• Object size distribution

• Large object reuse patterns

• Storage footprint

8

Extreme tension between small and large objects:

Ø Large objects (>10MB) occupy 95% storage footprint

Existing cloud storage solutions

9

Both dimensions: the lower the better

Price ($/GB/hour)

Pe
rfo

rm
an

ce
(la

te
nc

y)

Cheap $ Expensive $$$
Fast

Slow

Large objects managed by cloud object stores

10Price ($/GB/hour)

Object stores are cheap but too slow

Pe
rfo

rm
an

ce
(la

te
nc

y)
Both dimensions: the lower the better

AWS S3: $0.023 per GB per month

Cheap $ Expensive $$$
Fast

Slow

Small objects accelerated by in-memory caches

11Price ($/GB/hour)

In-memory caches are fast but too expensive

Pe
rfo

rm
an

ce
(la

te
nc

y)
Both dimensions: the lower the better

AWS ElastiCache: $0.016 per GB per hour

Cheap $ Expensive $$$
Fast

Slow

Object stores are cheap but too slow

Existing cloud storage solutions

12Price ($/GB/hour)

Pe
rfo

rm
an

ce
(la

te
nc

y)

Cheap $ Expensive $$$
Fast

Slow

• Caching both small and large objects is challenging
• Existing solutions are either too slow or expensive

Existing cloud storage solutions

13Price ($/GB/hour)

Pe
rfo

rm
an

ce
(la

te
nc

y)

Cheap $ Expensive $$$
Fast

Slow

• Caching both small and large objects is challenging
• Existing solutions are either too slow or expensive

How can we achieve the
best of both worlds?

14

Requires rethinking about a new cloud
cache/storage model that achieves both

cost effectiveness and high-performance!

• Caching both small and large objects is challenging
• Existing solutions are either too slow or expensive

15

InfiniCache: A cost-effective and high-
performance in-memory caching solution

atop Serverless Computing platform

• Insight #1: Serverless functions’ <CPU, Mem>
resources are pay-per-use

• Insight #2: Serverless providers offer “free” function
caching for tenants

16

InfiniCache: A cost-effective and high-
performance in-memory caching solution

atop Serverless Computing platform

• Insight #1: Serverless functions’ <CPU, Mem>
resources are pay-per-use

• Insight #2: Serverless providers offer “free” function
caching for tenants

à Cost-effectiveness

à High-performance

A primer on Serverless Computing
• Serverless computing enables cloud tenants to launch short-lived

tasks (i.e., Lambda functions) with high elasticity and fine-grained
resource billing

17
Serverless provider

Deploy

Functions
Tenants

Invoke

A primer on Serverless Computing
• Serverless computing enables cloud tenants to launch short-lived

tasks (i.e., Lambda functions) with high elasticity and fine-grained
resource billing

• Function: basic unit of deployment. Application consists of
multiple serverless functions

18
Serverless provider

Deploy

Functions
Tenants

Invoke

A primer on Serverless Computing
• Serverless computing enables cloud tenants to launch short-lived

tasks (i.e., Lambda functions) with high elasticity and fine-grained
resource billing

• Function: basic unit of deployment. Application consists of
multiple serverless functions

• Popular use cases: Backend APIs, data processing…

19
Serverless provider

Deploy

Functions
Tenants

Invoke

Serverless Computing is desirable

20

• Pay-per-use pricing model
• AWS Lambda: $0.2 per 1M invocations

$0.00001667 for every GB-sec

Serverless provider

Deploy

Functions
Tenants

Invoke

Serverless Computing is desirable
• Pay-per-use pricing model

• AWS Lambda: $0.2 per 1M invocations
$0.00001667 for every GB-sec

• Short-term function caching
• Provider caches triggered functions in memory without charging tenants

21
Serverless provider

Deploy

Functions
Tenants

Invoke

Serverless Computing is desirable
• Pay-per-use pricing model

• AWS Lambda: $0.2 per 1M invocations
$0.00001667 for every GB-sec

• Short-term function caching
• Provider caches triggered functions in memory without charging tenants

Goal: Exploit the serverless computing model to build
a cost-effective, high-performance in-memory cache

GET

Tenants
PUT

Serverless provider

Challenges: to build a memory cache with
serverless functions
• A strawman proposal

• Directly cache the objects in serverless
functions’ memory?

• No data availability guarantee

• Banned inbound network

• Limited per-function resources

23

Challenges: to build a memory cache with
serverless functions
• A strawman proposal

• Directly cache the objects in serverless
functions’ memory?

•No data availability guarantee

• Banned inbound network

• Limited per-function resources

24

⚠ Serverless functions could

be reclaimed any time

⚠ In-memory state is lost

Lambda

Challenges: to build a memory cache with
serverless functions
• A strawman proposal

• Directly cache the objects in serverless
functions’ memory?

• No data availability guarantee

•Banned inbound network

• Limited per-function resources

25

⚠ Serverless functions cannot

run as a server
Inboundconnection

Challenges: to build a memory cache with
serverless functions
• A strawman proposal

• Directly cache the objects in serverless
functions’ memory?

• No data availability guarantee

• Banned inbound network

•Limited per-function resources

26

⚠ Memory up to 3 GB

⚠ CPU up to 2 cores

Lambda Server

Our contribution: InfiniCache

• The first in-memory cache system built atop serverless functions

• InfiniCache achieves high data availability by leveraging erasure coding
and delta-sync periodic data backup across functions

• InfiniCache achieves high performance by utilizing the aggregated
network bandwidth of multiple functions in parallel

• InfiniCache achieves similar performance to AWS ElastiCache, while
improving the cost-effectiveness by 31—96X

27

Outline

• InfiniCache Design

• Evaluation

• Conclusion

28

InfiniCache bird’s eye view

29

EC encoder/decoder InfiniCache client library

Application

Request routing

Lambda management InfiniCache proxy server

Lambda cache pool

InfiniCache: PUT path

30

EC encoder InfiniCache client library

Application

InfiniCache proxy

Lambda cache pool

Request routing

InfiniCache: PUT path

31

EC encoder InfiniCache client library

Application

InfiniCache proxy

Lambda cache pool

X

Request routing

InfiniCache: PUT path

32

EC encoder InfiniCache client library

Application

InfiniCache proxy

Lambda cache pool

X

Request routing

d1 d2 p1

1. Object is split and encoded into
k+r chunks

k = 2, r = 1

InfiniCache: PUT path

33

EC encoder InfiniCache client library

Application

InfiniCache proxy

Lambda cache pool

X

Request routing

d1 d2 p1

1. Object split and encode into k+r
chunks

2. Object chunks are sent to the
proxy in parallel

k = 2, r = 1

InfiniCache: PUT path

34

EC encoder InfiniCache client library

Application

InfiniCache proxy

Lambda cache pool

X

Request routing

d1 d2 p1

d1 d2 p1

1. Object split and encode into k+r
chunks

2. Object chunks are sent to the
proxy in parallel

3. Proxy invoke Lambda cache
nodes

k = 2, r = 1

Invocation path

InfiniCache: PUT path

35

EC encoder InfiniCache client library

Application

InfiniCache proxy

Lambda cache pool

X

Request routing

d1 d2 p1

d1 d2 p1

d1 d2 p1

1. Object split and encode into k+r
chunks

2. Object chunks are sent to the
proxy in parallel

3. Proxy invoke Lambda cache
nodes

4. Proxy streams object chunks to
Lambda cache nodes

k = 2, r = 1

Data path

InfiniCache: GET path

36

EC decoder InfiniCache client library

Application

InfiniCache proxy

Lambda cache pool

Request routing

d1 d2 p1

InfiniCache: GET path

37

EC decoder InfiniCache client library

Application

InfiniCache proxy

Lambda cache pool

Request routing

d1 d2 p1

1. Client sends GET request

GET

InfiniCache: GET path

38

EC decoder InfiniCache client library

Application

InfiniCache proxy

Lambda cache pool

Request routing

d1 d2 p1

1. Client sends GET request

2. Proxy invokes associated
Lambda cache nodes

Invocation path

InfiniCache: GET path

39

EC decoder InfiniCache client library

Application

InfiniCache proxy

Lambda cache pool

Request routing

d1 d2 p1

1. Client sends GET request

2. Proxy invokes associated
Lambda cache nodes

3. Lambda cache nodes transfer
object chunks to proxy d1 p1 Data path

InfiniCache: GET path

40

EC decoder InfiniCache client library

Application

InfiniCache proxy

Lambda cache pool

Request routing

d1 d2 p1

1. Client sends GET request

2. Proxy invokes associated
Lambda cache nodes

3. Lambda cache nodes transfer
object chunks to proxy
• First-d optimization: Proxy

drops straggler Lambda

d1 p1 k = 2, r = 1

d2 is straggling…
Data path

InfiniCache: GET path

41

EC decoder InfiniCache client library

Application

InfiniCache proxy

Lambda cache pool

Request routing

d1 d2 p1

1. Client sends GET request

2. Proxy invokes associated
Lambda cache nodes

3. Lambda cache nodes transfer
object chunks to proxy

4. Proxy streams k chunks in
parallel to client

d1 p1

d1 p1 k = 2 chunks

k = 2, r = 1

d2 is straggling…
Data path

InfiniCache: GET path

42

EC decoder

Application

InfiniCache proxy

Lambda cache pool

Request routing

d1 d2 p1

1. Client sends GET request

2. Proxy invokes associated
Lambda cache nodes

3. Lambda cache nodes transfer
object chunks to proxy

4. Proxy streams k chunks in
parallel to client

5. Client library decodes k chunks

d1 p1

d1 p1

X

InfiniCache client library

k = 2 chunks

k = 2, r = 1

d2 is straggling…
Data path

Maximizing data availability
• Erasure-coding

• Periodic warm-up

• Periodic delta-sync backup

43

Maximizing data availability
• Erasure-coding

• Periodic warm-up

• Periodic delta-sync backup

44

AWS Lambda reclaiming policy

45

0 4 8 12 16 20 24
Timeline (Hour)

0
50

100
150
200
250
300

#
)

un
c

re
cl

ai
m

ed 1 min (01/09/20)
9 min (08/21/19)

Maximizing data availability: Periodic warm-up

AWS Lambda reclaiming policy

46

0 4 8 12 16 20 24
Timeline (Hour)

0
50

100
150
200
250
300

#
)

un
c

re
cl

ai
m

ed 1 min (01/09/20)
9 min (08/21/19)

Maximizing data availability: Periodic warm-up

Function reclaiming

Maximizing data availability: Periodic warm-up

AWS Lambda reclaiming policy

• Shorter triggering interval will lower

the function reclaiming rate

47

0 4 8 12 16 20 24
Timeline (Hour)

0
50

100
150
200
250
300

#
)

un
c

re
cl

ai
m

ed 1 min (01/09/20)
9 min (08/21/19)

1min interval
significantly reduce

function reclaiming rate

Maximizing data availability: Periodic warm-up

48

Proxy1. Lambda nodes are cached by
AWS when not running
• AWS may reclaim cold

Lambda functions after they
are idling for a period

Maximizing data availability: Periodic warm-up

49

1. Lambda nodes are cached by
AWS when not running
• AWS may reclaim cold

Lambda functions after they
are idling for a period

2. Proxy periodically invokes
sleeping Lambda cache nodes to
extend their lifespan

Proxy

Maximizing data availability: Periodic backup

50

Proxy

Maximizing data availability: Periodic backup

51

Function deployment

Proxy

: Primary

: Backup

Maximizing data availability: Periodic backup

52

1. Proxy periodically sends out
backup commands to Lambda
cache nodes

Proxy

: Primary

: Backup

Maximizing data availability: Periodic backup

53

1. Proxy periodically sends out
backup commands to Lambda
cache nodes

2. Lambda node performs delta-
sync with its peer replica
• Source Lambda propagates delta-

update to destination Lambda

Relay

Proxy

: Primary

: Backup

Seamless failover

54

Proxy

Function deployment

: Primary

: Backup

Maximizing data availability: Seamless failover

55

1. Proxy invokes a Lambda cache
node with a GET request

Proxy

GET(key)

: Primary

: Backup

Maximizing data availability: Seamless failover

56

1. Proxy invokes a Lambda cache
node with a GET request

2. Primary Lambda gets reclaimed

Proxy

Reclaim
ed

GET(key)

: Primary

: Backup

Maximizing data availability: Seamless failover

57

1. Proxy invokes a Lambda cache
node with a GET request

2. Primary Lambda gets reclaimed

3. The invocation request gets
seamlessly redirected to the
backup Lambda

Reclaim
ed

Proxy

GET(key)

: Primary

: Backup

Maximizing data availability: Seamless failover

58

1. Proxy invokes a Lambda cache node with a GET
request

2. Source Lambda gets reclaimed

3. The invocation request gets seamlessly
redirected to the backup Lambda
• Failover gets automatically

done and the backup
becomes the primary

• By exploiting the auto-scaling
feature of AWS Lambda

Object chunk

Reclaim
ed

Proxy

GET(key)

: Primary

: Backup

Outline

• InfiniCache Design

• Evaluation

• Conclusion

59

Experimental setup
• InfiniCache

• 400 1.5GB Lambda cache nodes
• Client running on one c5n.4xlarge EC2 VM
• Warm-up interval: 1 minute; backup interval: 5 minutes
• Under one AWS VPC

• Production workloads
• The first 50 hours of the Dallas datacenter traces from IBM Docker

registry workloads
• All objects: including small and large objects
• Large object only: objects > 10MB

60

Cost effectiveness of InfiniCache

61

101

102

$518.40

$20.52 $16.51

$5.41

ElastiCache AWS ElastiCache
• One cache.r5.24xlarge

with 600GB memory
• $10.368 per hour

Cost effectiveness of InfiniCache

62

101

102

$518.40

$20.52 $16.51

$5.41

(lastiCache
IC (all oEjects)
IC (large only)

Workload setup
• All objects
• Large object only

• Object larger than 10MB

Cost effectiveness of InfiniCache

63

101

102

$518.40

$20.52 $16.51

$5.41

(lastiCache
IC (all oEjects)
IC (large only)

31x

Workload setup
• All objects
• Large object only

• Object larger than 10MB

Cost effectiveness of InfiniCache

64

101

102

$518.40

$20.52 $16.51

$5.41

(lastiCache
IC (all oEjects)
IC (large only)
IC (large no Eackup)

Workload setup
• All objects
• Large object only

• Object larger than 10MB
• Large object w/o backup

96x

Cost effectiveness of InfiniCache

65

101

102

$518.40

$20.52 $16.51

$5.41

(lastiCache
IC (all oEjects)
IC (large only)
IC (large no Eackup)

Workload ElastiCache InfiniCache InfiniCache w/o backup
All objects 67.9% 64.7% ---
Large object only 65.9% 63.6% 56.1%

Workload setup
• All objects
• Large object only

• Object larger than 10MB
• Large object w/o backup

Hit ratio

Cost effectiveness of InfiniCache

66

101

102

$518.40

$20.52 $16.51

$5.41

(lastiCache
IC (all oEjects)
IC (large only)
IC (large no Eackup)

3x

Workload ElastiCache InfiniCache InfiniCache w/o backup
All objects 67.9% 64.7% ---
Large object only 65.9% 63.6% 56.1%

Workload setup
• All objects
• Large object only

• Object larger than 10MB
• Large object w/o backup

Hit ratio and $$ cost tradeoff

Cost effectiveness of InfiniCache

67

101

102

$518.40

$20.52 $16.51

$5.41

(lastiCache
IC (all oEjects)
IC (large only)
IC (large no Eackup)

96x

InfiniCache is 31 – 96x cheaper than ElastiCache because
tenant does not pay when Lambdas are not running

Workload setup
• All objects
• Large object only

• Object larger than 10MB
• Large object w/o backup

3x

Performance of InfiniCache

68

All objects Large objects only

All objects Large objects only

Performance of InfiniCache

69

> 100 times
improvement

Performance of InfiniCache

70

Performance of InfiniCache

71

Lambda invocation overhead (~13ms)
dominates when fetching small objects

Performance of InfiniCache

72

InfiniCache achieves same or higher
performance than ElastiCache for large objects

Conclusion
• InfiniCache is the first in-memory cache system built atop a

serverless computing platform (AWS)

• InfiniCache synthesizes a series of techniques to achieve high

performance while maintaining good data availability

• InfiniCache improves the cost-effectiveness by 31-96x compared

to AWS ElastiCache

73

Thank you!
• Contact: Ao Wang – awang24@gmu.edu,

Jingyuan Zhang – jzhang33@gmu.edu

• https://github.com/mason-leap-lab/infinicache

74

http://gmu.edu
http://gmu.edu
https://github.com/mason-leap-lab/infinicache

