
Phoenix: Rebirth of a Cryptographic Password-Hardening Service

Russell W.F. Lai 1,2

Christoph Egger 1

Dominique Schröder 1

Sherman S.M. Chow 2

1Friedrich-Alexander-Universität
Erlangen-Nürnberg

2Chinese University of Hong Kong

August 17, 2017

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Scheme Design

2 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Password Authentication - before 1976

User
Username Alice
Password 123456

Database
Username Alice
Password pw

Salt aqZcSP

I am “Alice”.

My password is “123456”.

Validation Algorithm

pw
?
= 123456

OK!

3 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Password Authentication - before 1976

User
Username Alice
Password 123456

Database
Username Alice
Password pw

Salt aqZcSP

I am “Alice”.

My password is “123456”.

Validation Algorithm

pw
?
= 123456

OK!

3 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Password Authentication - before 1976

User
Username Alice
Password 123456

Database
Username Alice
Password pw

Salt aqZcSP

I am “Alice”.

My password is “123456”.

Validation Algorithm

pw
?
= 123456

OK!

3 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Password Authentication - after 1976

User
Username Alice
Password 123456

Database
Username Alice

Hash h
Salt aqZcSP

I am “Alice”.

My password is “123456”.

Validation Algorithm

h
?
= H(123456, aqZcSP)

OK!

3 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Problem I - Weak Passwords

Worst Passwords of 2016 by TeamsID

• 4% of users use “123456” as password
• 25% of users use the top 25 worst passwords
• Users are stubborn
◦ Choose stronger passwords
◦ Use crypto

4 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Problem II - Stolen Passwords

Data breaches in 2004–2017 (Wikipedia)

Cost of Data Breach
(IBM - 2017 Study)

• Average Cost per Data
Breach: $3.62 million

• Average Cost per Stolen
Record $141

Service providers have
incentives to change!

5 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Problem II - Stolen Passwords

Data breaches in 2004–2017 (Wikipedia)

Cost of Data Breach
(IBM - 2017 Study)

• Average Cost per Data
Breach: $3.62 million

• Average Cost per Stolen
Record $141

Service providers have
incentives to change!

5 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Problem II - Stolen Passwords

Data breaches in 2004–2017 (Wikipedia)

Cost of Data Breach
(IBM - 2017 Study)

• Average Cost per Data
Breach: $3.62 million

• Average Cost per Stolen
Record $141

Service providers have
incentives to change!

5 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Password Hardening Services (Facebook, Pythia)

“Alice”

“123456”

OK!
Database

Username Alice
Ciphertext c

Verification Algorithm Protocol

Alice

〈C(skC, c,Alice, 123456),S(skS ,Alice)〉val
Crypto Server (Server)

6 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Password Hardening Services (Facebook, Pythia)

“Alice”

“123456”

OK!
Database (Client)
Username Alice
Ciphertext c

Verification Algorithm Protocol

Alice

〈C(skC , c,Alice, 123456),S(skS ,Alice)〉val
Crypto Server (Server)

6 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Password Hardening Services (Facebook, Pythia)

“Alice”

“123456”

OK!
Database (Client)
Username Alice
Ciphertext c

Verification Algorithm Protocol

Alice

〈C(skC , c,Alice, 123456),S(skS ,Alice)〉val
Crypto Server (Server)

Key Features

• Seamless to end user (Alice)

• Obliviousness: (Malicious) server does not learn password

• Hiding: (Compromised) client cannot verify password by itself
– eliminate offline attacks

• Rate-Limiting (per Username): (Compromised) client cannot
submit too many requests

– mitigate online attacks

6 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Password Hardening Services (Facebook, Pythia)

“Alice”

“123456”

OK!
Database (Client)
Username Alice
Ciphertext c

Messages from client are independent of passwords!

Verification Algorithm Protocol

Alice

〈C(skC , c,Alice, 123456),S(skS ,Alice)〉val
Crypto Server (Server)

Key Features

• Seamless to end user (Alice)

• Obliviousness: (Malicious) server does not learn password

• Hiding: (Compromised) client cannot verify password by itself
– eliminate offline attacks

• Rate-Limiting (per Username): (Compromised) client cannot
submit too many requests

– mitigate online attacks

6 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Password Hardening Services (Facebook, Pythia)

“Alice”

“123456”

OK!
Database (Client)
Username Alice
Ciphertext c

Verification Algorithm Protocol

Alice

〈C(skC , c,Alice, 123456),S(skS ,Alice)〉val
Crypto Server (Server)

Key Features

• Seamless to end user (Alice)

• Obliviousness: (Malicious) server does not learn password

• Hiding: (Compromised) client cannot verify password by itself
– eliminate offline attacks

• Rate-Limiting (per Username): (Compromised) client cannot
submit too many requests

– mitigate online attacks

6 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Password Hardening Services (Facebook, Pythia)

“Alice”

“123456”

OK!

??

Database (Client)
Username Alice
Ciphertext c

Verification Algorithm Protocol

Alice

〈C(skC , c,Alice, 123456),S(skS ,Alice)〉val
Crypto Server (Server)

Key Features

• Seamless to end user (Alice)

• Obliviousness: (Malicious) server does not learn password

• Hiding: (Compromised) client cannot verify password by itself
– eliminate offline attacks

• Rate-Limiting (per Username): (Compromised) client cannot
submit too many requests

– mitigate online attacks

6 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Password Hardening Services (Facebook, Pythia)

“Alice”

“123456”

OK!
Database (Client)
Username Alice
Ciphertext c

Verification Algorithm Protocol

Alice

〈C(skC, c,Alice, 000000),S(skS ,Alice)〉val
Crypto Server (Server)

Key Features

• Seamless to end user (Alice)

• Obliviousness: (Malicious) server does not learn password

• Hiding: (Compromised) client cannot verify password by itself
– eliminate offline attacks

• Rate-Limiting (per Username): (Compromised) client cannot
submit too many requests

– mitigate online attacks
6 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Password Hardening Services (Facebook, Pythia)

“Alice”

“123456”

OK!
Database (Client)
Username Alice
Ciphertext c

Verification Algorithm Protocol

Alice

〈C(skC , c,Alice, qwerty),S(skS ,Alice)〉val
Crypto Server (Server)

Key Features

• Seamless to end user (Alice)

• Obliviousness: (Malicious) server does not learn password

• Hiding: (Compromised) client cannot verify password by itself
– eliminate offline attacks

• Rate-Limiting (per Username): (Compromised) client cannot
submit too many requests

– mitigate online attacks
6 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Password Hardening Services (Facebook, Pythia)

“Alice”

“123456”

OK!
Database (Client)
Username Alice
Ciphertext c

Verification Algorithm Protocol

Alice

〈C(skC , c,Alice, asdfgh),S(skS ,Alice)〉val
Crypto Server (Server)

Key Features

• Seamless to end user (Alice)

• Obliviousness: (Malicious) server does not learn password

• Hiding: (Compromised) client cannot verify password by itself
– eliminate offline attacks

• Rate-Limiting (per Username): (Compromised) client cannot
submit too many requests

– mitigate online attacks
6 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Password Hardening Services (Facebook, Pythia)

“Alice”

“123456”

OK!
Database (Client)
Username Alice
Ciphertext c

Verification Algorithm Protocol

Alice

Too many requests!
Crypto Server (Server)

Key Features

• Seamless to end user (Alice)

• Obliviousness: (Malicious) server does not learn password

• Hiding: (Compromised) client cannot verify password by itself
– eliminate offline attacks

• Rate-Limiting (per Username): (Compromised) client cannot
submit too many requests

– mitigate online attacks
6 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Password Hardening Services (Facebook, Pythia)

“Alice”

“123456”

OK!
Database (Client)
Username Alice
Ciphertext c

Verification Algorithm Protocol

Alice

〈C(skC , c,Alice, 123456),S(skS ,Alice)〉val
Crypto Server (Server)

Key Features

• Key-Rotation
◦ Update both keys if either party is compromised
◦ Bring the entire system to a fresh state
◦ Update ciphertexts without knowing passwords (seamless to end user)

6 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Password Hardening Services (Facebook, Pythia)

“Alice”

“123456”

OK!
Database (Client)
Username Alice
Ciphertext c

Verification Algorithm Protocol

Alice

〈C(skC , c,Alice, 123456),S(skS ,Alice)〉val
Crypto Server (Server)

Key Features

• Key-Rotation
◦ Update both keys if either party is compromised
◦ Bring the entire system to a fresh state
◦ Update ciphertexts without knowing passwords (seamless to end user)

6 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

The Crypto Server

Crypto Server

• Key generation independent of client
◦ Can be set up by any third party company / organization
◦ One server can serve multiple clients

• Only stores:
◦ One secret key per client
◦ One counter per end user for rate-limiting

(deleted after the current time interval)

• Can be split into multiple servers (future work)

7 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

The Crypto Server

Crypto Server

• Key generation independent of client
◦ Can be set up by any third party company / organization
◦ One server can serve multiple clients

• Only stores:
◦ One secret key per client
◦ One counter per end user for rate-limiting

(deleted after the current time interval)

• Can be split into multiple servers (future work)

7 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

The Crypto Server

Crypto Server

• Key generation independent of client
◦ Can be set up by any third party company / organization
◦ One server can serve multiple clients

• Only stores:
◦ One secret key per client
◦ One counter per end user for rate-limiting

(deleted after the current time interval)

• Can be split into multiple servers (future work)

7 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

False Friends (Similar but different notions)

Common Feature

• To distribute the task of verifying passwords to multiple servers

Distributed Password Verification
(CCS’15) Camenisch, Lehmann, and Neven

• Joint key generation between client and server

• Rate-limiting at client only

Password-Authenticated Key Exchange (PAKE) /
Password-Protected Secret Sharing (PPSS)

• Crypto servers need to store a secret share per end user

• No / inefficient key rotations

8 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

False Friends (Similar but different notions)

Common Feature

• To distribute the task of verifying passwords to multiple servers

Distributed Password Verification
(CCS’15) Camenisch, Lehmann, and Neven

• Joint key generation between client and server

• Rate-limiting at client only

Password-Authenticated Key Exchange (PAKE) /
Password-Protected Secret Sharing (PPSS)

• Crypto servers need to store a secret share per end user

• No / inefficient key rotations

8 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

False Friends (Similar but different notions)

Common Feature

• To distribute the task of verifying passwords to multiple servers

Distributed Password Verification
(CCS’15) Camenisch, Lehmann, and Neven

• Joint key generation between client and server

• Rate-limiting at client only

Password-Authenticated Key Exchange (PAKE) /
Password-Protected Secret Sharing (PPSS)

• Crypto servers need to store a secret share per end user

• No / inefficient key rotations
8 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Literature on Password Hardening (PH)

Partially-Oblivious Pseudorandom Functions (PO-PRF)
(USENIX’15) Everspaugh, Chatterjee, Scott, Juels, and Ristenpart

• Formalized PO-PRF

• Construction (Pythia) based on pairing

Partially-Oblivious Commitments (PO-Com)
(CCS’16) Schneider, Fleischhacker, Schröder, and Backes

• Formalized PO-Com
◦ Security definitions too weak for PH (not covering online attacks)

• Construction without pairing
◦ 2× faster than Pythia when used for PH

9 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Literature on Password Hardening (PH)

Partially-Oblivious Pseudorandom Functions (PO-PRF)
(USENIX’15) Everspaugh, Chatterjee, Scott, Juels, and Ristenpart

• Formalized PO-PRF

• Construction (Pythia) based on pairing

Partially-Oblivious Commitments (PO-Com)
(CCS’16) Schneider, Fleischhacker, Schröder, and Backes

• Formalized PO-Com
◦ Security definitions too weak for PH (not covering online attacks)

• Construction without pairing
◦ 2× faster than Pythia when used for PH

9 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

This Work

• Finally, formalized PH
◦ Revisit and strengthen model of Schneider et al.

• Formalized key-rotation

• Devastating online attacks against scheme of Schneider et al.
◦ Attack 1: Enable offline-dictionary attack after one validation request
◦ Attack 2: Extract password after one validation request
◦ The attacks defeat the purpose of external crypto server
◦ The attacks are outside of their security model

• Extremely simple construction (still without pairing)
◦ Simple enough for real-world use – easy to understand and implement
◦ Proven secure under strengthened security model
◦ 1.5× faster than scheme of Schneider et al.
◦ 3× faster than Pythia

10 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

This Work

• Finally, formalized PH
◦ Revisit and strengthen model of Schneider et al.

• Formalized key-rotation

• Devastating online attacks against scheme of Schneider et al.
◦ Attack 1: Enable offline-dictionary attack after one validation request
◦ Attack 2: Extract password after one validation request
◦ The attacks defeat the purpose of external crypto server
◦ The attacks are outside of their security model

• Extremely simple construction (still without pairing)
◦ Simple enough for real-world use – easy to understand and implement
◦ Proven secure under strengthened security model
◦ 1.5× faster than scheme of Schneider et al.
◦ 3× faster than Pythia

10 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

This Work

• Finally, formalized PH
◦ Revisit and strengthen model of Schneider et al.

• Formalized key-rotation

• Devastating online attacks against scheme of Schneider et al.
◦ Attack 1: Enable offline-dictionary attack after one validation request
◦ Attack 2: Extract password after one validation request
◦ The attacks defeat the purpose of external crypto server
◦ The attacks are outside of their security model

• Extremely simple construction (still without pairing)
◦ Simple enough for real-world use – easy to understand and implement
◦ Proven secure under strengthened security model
◦ 1.5× faster than scheme of Schneider et al.
◦ 3× faster than Pythia

10 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

This Work

• Finally, formalized PH
◦ Revisit and strengthen model of Schneider et al.

• Formalized key-rotation

• Devastating online attacks against scheme of Schneider et al.
◦ Attack 1: Enable offline-dictionary attack after one validation request
◦ Attack 2: Extract password after one validation request
◦ The attacks defeat the purpose of external crypto server
◦ The attacks are outside of their security model

• Extremely simple construction (still without pairing)
◦ Simple enough for real-world use – easy to understand and implement
◦ Proven secure under strengthened security model
◦ 1.5× faster than scheme of Schneider et al.
◦ 3× faster than Pythia

10 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

From Salted Hash to Phoenix (Intuitive Description)

Database (Client)
Username un

Hash H(un, pw, nC)
Client Nonce nC

Server Nonce

Enrollment Protocol

Username un

PRF Value

Server Nonce nS

Crypto Server (Server)

11 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

From Salted Hash to Phoenix (Intuitive Description)

Database (Client)
Username un
PRF Value PRFsk(un, pw, nC)

Client Nonce nC

Server Nonce

Enrollment Protocol

Username un

PRF Value

Server Nonce nS

Crypto Server (Server)

11 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

From Salted Hash to Phoenix (Intuitive Description)

Database (Client)
Username un

Product PRF Value
PRFskS (un, nS)·

PRFskC (un, pw, nC)
Client Nonce nC
Server Nonce nS

Enrollment Protocol

Username un

PRF Value PRFskS (un, nS)

Server Nonce nS

Crypto Server (Server)

11 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

From Salted Hash to Phoenix (Intuitive Description)

Database (Client)
Username un

Ciphertext Enc

(
pkS ,

PRFskS (un, nS)·
PRFskC (un, pw, nC)

)
Client Nonce nC
Server Nonce nS

Enrollment Protocol

Username un

PRF Value PRFskS (un, nS)

Server Nonce nS

Crypto Server (Server)

11 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

From Salted Hash to Phoenix (Intuitive Description)

Database (Client)
Username un

Ciphertext Enc

(
pkS ,

PRFskS (un, nS)·
PRFskC (un, pw, nC)

)
Client Nonce nC
Server Nonce nS

Enrollment Protocol

Username un

PRF Value HS(un, nS)
kS

Server Nonce nS

Crypto Server (Server)

Homomorphic Encryption

Enc(pk,m ·m′) ≈
Enc(pk,m) · Enc(pk,m′)

Key-Homomorphic PRF

PRFsk·sk′(m) =
PRFsk(m) · PRFsk′(m)

11 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

From Salted Hash to Phoenix (Intuitive Description)

Database (Client)
Username un

(g r , hr · HS(un, nS)
kS · HC(un, pw, nC)

kC)
Client Nonce nC
Server Nonce nS

Enrollment Protocol

Username un

PRF Value

Server Nonce nS

Crypto Server (Server)

e.g., ElGamal (and variants)

sk = s, pk = h = g s

c = (g r , hr ·m)

(g r+r ′ , hr+r ′ ·m ·m′) =
(g r , hr ·m) · (g r ′ , hr

′ ·m′)

e.g., Naor-Pinkas-Reingold

sk = k
y = H(m)k

H(m)k+k ′
= H(m)k · H(m)k

′

11 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Phoenix Validation (Intuitive Description)

Database (Client)
Username un
Ciphertext (g r , hr · HS(un, nS)kS · HC(un, pw, nC)kC)

Client Nonce nC
Server Nonce nS

Crypto Server (Server)

Validation Protocol

hr · HS(un, nS)kS =
hr · HS(un, nS)kS · HC(un, pw, nC)kC

HC(un, pw, nC)kC

(g r , hr · HS(un, nS)kS), un, nS

Is un requested too many times?

Is the ciphertext valid?

Prove(The ciphertext is valid!)

12 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Phoenix Validation (Intuitive Description)

Database (Client)
Username un
Ciphertext (g r , hr · HS(un, nS)kS · HC(un, pw, nC)kC)

Client Nonce nC
Server Nonce nS

Crypto Server (Server)

Validation Protocol

hr · HS(un, nS)kS =
hr · HS(un, nS)kS · HC(un, pw, nC)kC

HC(un, pw, nC)kC

(g r , hr · HS(un, nS)kS), un, nS

Is un requested too many times?

Is the ciphertext valid?

Prove(The ciphertext is valid!)

12 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Phoenix Validation (Intuitive Description)

Database (Client)
Username un
Ciphertext (g r , hr · HS(un, nS)kS · HC(un, pw, nC)kC)

Client Nonce nC
Server Nonce nS

Crypto Server (Server)

Validation Protocol

hr · HS(un, nS)kS =
hr · HS(un, nS)kS · HC(un, pw, nC)kC

HC(un, pw, nC)kC

(g r , hr · HS(un, nS)kS), un, nS

Is un requested too many times?

Is the ciphertext valid?

Prove(The ciphertext is valid!)

12 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Phoenix Validation (Intuitive Description)

Database (Client)
Username un
Ciphertext (g r , hr · HS(un, nS)kS · HC(un, pw, nC)kC)

Client Nonce nC
Server Nonce nS

Crypto Server (Server)

Validation Protocol

hr · HS(un, nS)kS =
hr · HS(un, nS)kS · HC(un, pw, nC)kC

HC(un, pw, nC)kC

(g r , hr · HS(un, nS)kS), un, nS

Is un requested too many times?

Is the ciphertext valid?

Prove(The ciphertext is valid!)

12 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Phoenix Validation (Intuitive Description)

Database (Client)
Username un
Ciphertext (g r , hr · HS(un, nS)kS · HC(un, pw, nC)kC)

Client Nonce nC
Server Nonce nS

Crypto Server (Server)

Validation Protocol

hr · HS(un, nS)kS =
hr · HS(un, nS)kS · HC(un, pw, nC)kC

HC(un, pw, nC)kC

(g r , hr · HS(un, nS)kS), un, nS

Is un requested too many times?

Is the ciphertext valid?

Prove(The ciphertext is valid!)

12 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Why it works?

• Obliviousness:
◦ Nothing about the password is sent to the server

(g r , hr · HS(un, nS)kS), un, nS

• Hiding:
◦ PRF values of the passwords are encrypted to the server
◦ Client cannot decrypt by itself
◦ Validity check binds (un, nS) with HS(un, nS)kS in c
◦ Online attacks require guessing pw to remove HC(pw, nC)kC from c

13 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Why it works?

• Obliviousness:
◦ Nothing about the password is sent to the server

(g r , hr · HS(un, nS)kS), un, nS

• Hiding:
◦ PRF values of the passwords are encrypted to the server
◦ Client cannot decrypt by itself
◦ Validity check binds (un, nS) with HS(un, nS)kS in c
◦ Online attacks require guessing pw to remove HC(pw, nC)kC from c

13 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Phoenix Key-Rotation (Intuitive Description)

Database (Client) Crypto Server (Server)

g s·r · HS(un, nS)kS · HC(un, pw, nC)kC

↓ˆα
gα·s·r · HS(un, nS)α·kS · HC(un, pw, nC)α·kC

↓ ·(g r)β · HS(un, nS)
γ

g (α·s+β)·r · HS(un, nS)α·kS+γ · HC(un, pw, nC)α·kC

=

g s′·r · HS(un, nS)k
′
S · HC(un, pw, nC)k

′
C

14 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Russell W. F. Lai

Phoenix Key-Rotation (Intuitive Description)

Database (Client) Crypto Server (Server)

g s·r · HS(un, nS)kS · HC(un, pw, nC)kC

↓ˆα
gα·s·r · HS(un, nS)α·kS · HC(un, pw, nC)α·kC

↓ ·(g r)β · HS(un, nS)
γ

g (α·s+β)·r · HS(un, nS)α·kS+γ · HC(un, pw, nC)α·kC

=

g s′·r · HS(un, nS)k
′
S · HC(un, pw, nC)k

′
C

14 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Evaluation and Deployment

15 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Evaluation

In Comparison

Current password hashing recommendations suggest up to one second
single-core computing time

Context
We have all three (python based) implementations running on
Amazon AWS single-core instances

Questions

• How long does the user have to wait for password verification

• Do we need many servers to support Password-Hardening

• What are the practical implications

16 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Evaluation

How long must the end user wait for to log in?

≈ 8 ms! (+ round trip time)

Frankfurt Ireland
HTTP HTTPS HTTPS HTTP HTTPS HTTPS

keep-alive keep-alive

RTT (64 bytes) 1.2 23

Pythia enroll/validate 17.93 25.28 16.01 62.03 113.79 38.56

Schneider et al. enroll 9.80 22.86 8.14 53.72 111.40 30.89
Schneider et al. validate 12.30 25.65 10.73 56.32 115.32 33.49

Phoenix enroll 5.43 17.93 3.89 50.30 107.25 26.52
Phoenix validate 9.74 22.78 8.06 53.92 113.02 30.73

Latency in millisecond (ms)

17 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Evaluation

How long must the end user wait for to log in?

≈ 8 ms! (+ round trip time)

Frankfurt Ireland
HTTP HTTPS HTTPS HTTP HTTPS HTTPS

keep-alive keep-alive

RTT (64 bytes) 1.2 23

Pythia enroll/validate 17.93 25.28 16.01 62.03 113.79 38.56

Schneider et al. enroll 9.80 22.86 8.14 53.72 111.40 30.89
Schneider et al. validate 12.30 25.65 10.73 56.32 115.32 33.49

Phoenix enroll 5.43 17.93 3.89 50.30 107.25 26.52
Phoenix validate 9.74 22.78 8.06 53.92 113.02 30.73

Latency in millisecond (ms)

17 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Evaluation

How many requests can the server entertain in one second?

Over 370!

HTTPS HTTPS
keep-alive

parameter 2, 607.16 807.50

Pythia enroll/validate 128.50 125.75

Schneider et al. enroll 380.37 278.51
Schneider et al. validate 221.75 183.92

Phoenix enroll 1, 557.81 697.66
Phoenix validate 371.34 275.42

Requests per second

18 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Evaluation

How many requests can the server entertain in one second?

Over 370!

HTTPS HTTPS
keep-alive

parameter 2, 607.16 807.50

Pythia enroll/validate 128.50 125.75

Schneider et al. enroll 380.37 278.51
Schneider et al. validate 221.75 183.92

Phoenix enroll 1, 557.81 697.66
Phoenix validate 371.34 275.42

Requests per second

18 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Practical Deployment

Hybrid Scheme

Can we make use of memory-hard functions like Argon2 or scrypt?

• Use a memory-hard function instead of a traditional hash function
for the PRF

• Even if the attacker has compromised both Client and Server,
she has to use the memory-hard function for dictionary attacks

Naor-Pinkas-Reingold

sk = k
PRF value

19 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Practical Deployment

Hybrid Scheme

Can we make use of memory-hard functions like Argon2 or scrypt?

• Use a memory-hard function instead of a traditional hash function
for the PRF

• Even if the attacker has compromised both Client and Server,
she has to use the memory-hard function for dictionary attacks

Naor-Pinkas-Reingold

sk = k
PRF value H(x)k

19 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Practical Deployment

Hybrid Scheme

Can we make use of memory-hard functions like Argon2 or scrypt?

• Use a memory-hard function instead of a traditional hash function
for the PRF

• Even if the attacker has compromised both Client and Server,
she has to use the memory-hard function for dictionary attacks

Naor-Pinkas-Reingold

sk = k
PRF value Sha256(x)k

19 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Practical Deployment

Hybrid Scheme

Can we make use of memory-hard functions like Argon2 or scrypt?

• Use a memory-hard function instead of a traditional hash function
for the PRF

• Even if the attacker has compromised both Client and Server,
she has to use the memory-hard function for dictionary attacks

Naor-Pinkas-Reingold

sk = k
PRF value Argon2(x)k

19 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Practical Deployment

Availability

What happens when the Crypto Server is unavailable?

• Server only holds key-pair per Client and Rate-Limiting information

• Several Crypto Servers can host the key-pair for availability but
keys are then located on several machines

20 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Practical Deployment

Availability

What happens when the Crypto Server is unavailable?

• Server only holds key-pair per Client and Rate-Limiting information

• Several Crypto Servers can host the key-pair for availability but
keys are then located on several machines

sk

20 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Practical Deployment

Availability

What happens when the Crypto Server is unavailable?

• Server only holds key-pair per Client and Rate-Limiting information

• Several Crypto Servers can host the key-pair for availability but
keys are then located on several machines

sk

sk

20 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Practical Deployment

Availability

What happens when the Crypto Server is unavailable?

• Server only holds key-pair per Client and Rate-Limiting information

• Several Crypto Servers can host the key-pair for availability but
keys are then located on several machines

sk

sk

20 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

DDoS and Rate-Limiting

There are two scenarios where Rate-Limiting might be triggered:

Client has been compromised

• It is acceptable when users fail to log in

Alice
123456

21 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

DDoS and Rate-Limiting

There are two scenarios where Rate-Limiting might be triggered:

Client has been compromised

• It is acceptable when users fail to log in

Alice
123456

21 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

DDoS and Rate-Limiting

There are two scenarios where Rate-Limiting might be triggered:

External Attacker

• Honest users should only be slightly inconvenienced

• Crypto Server has little information to distinguish users

• Client is honest and can therefore help

Alice
123456

21 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

DDoS and Rate-Limiting

There are two scenarios where Rate-Limiting might be triggered:

External Attacker

• Honest users should only be slightly inconvenienced

• Crypto Server has little information to distinguish users

• Client is honest and can therefore help

Alice
123456

Alice
password

21 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Rate-Limiting external clients

• Warn the Client about upcoming Rate-Limiting:
once a soft limit is exceeded
there is a limited number of additional tries available
the client needs to make sure only the honest user gets to use these

• Client then takes extra measures, for example
◦ Send an E-Mail / SMS / . . . with an one-time code to the user
◦ Add Puzzles to the login screen

22 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Rate-Limiting external clients

Alice
password

23 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Rate-Limiting external clients

Alice
000000

23 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Rate-Limiting external clients

Alice
querty

23 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Rate-Limiting external clients

Alice
asdfgh

23 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Rate-Limiting external clients

S
lo

w
d

ow
n

!

23 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Rate-Limiting external clients

SMS:
Token=SECRET

23 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Rate-Limiting external clients

Alice
098765

23 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Rate-Limiting external clients

Missing Token

23 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Rate-Limiting external clients

Alice
password
SECRET

23 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Upgrade Path

• Both, salted hash and Phoenix need a database field to store data

• Algorithm-ID often already stored alongside the salt and hash

• Upgrade users once they log in

Username Password Data

Alice 12:PeADRGbk:gaG4s[...]2BwM= . . .
Bob 12:q79JVDSo:IIRBz[...]/9L4= . . .
Carol 5:3V+ToDHL:FCozKw/gxP/9YZ+Pdr7pcg== . . .

24 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Upgrade Path

• Both, salted hash and Phoenix need a database field to store data

• Algorithm-ID often already stored alongside the salt and hash

• Upgrade users once they log in

Username Password Data

Alice 12:PeADRGbk:gaG4s[...]2BwM= . . .
Bob 13:MxTfsL[...]phh+8i3DU== . . .
Carol 5:3V+ToDHL:FCozKw/gxP/9YZ+Pdr7pcg== . . .

24 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Concluding Remark

Summary

• Strengthened model of password-hardening

• Formal treatment to key-rotation

• Devastating attack to an existing scheme

• Phoenix: The most efficient scheme to date

On Going Projects

• Extended functionality – Derive key upon successful validation

• Anonymize end user while retaining rate-limiting

• Deployment by start-up company

25 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Concluding Remark

Summary

• Strengthened model of password-hardening

• Formal treatment to key-rotation

• Devastating attack to an existing scheme

• Phoenix: The most efficient scheme to date

On Going Projects

• Extended functionality – Derive key upon successful validation

• Anonymize end user while retaining rate-limiting

• Deployment by start-up company

25 of 26

Phoenix: Rebirth of a Cryptographic Password-Hardening Service Christoph Egger

Russell W. F. Lai
FAU Nuremberg ←
Chinese U. Hong Kong

Christoph Egger
FAU Nuremberg

Dominique Schröder
FAU Nuremberg

Sherman S. M. Chow
Chinese U. Hong Kong

26 of 26

